Answer:
The phase difference between the reflected waves when they meet at the tuning fork is 159.29 rad.
Step-by-step explanation:
Given that,
Frequency of sound wave = 240 Hz
Distance = 46.0 m
Distance of fork = 14 .0 m
We need to calculate the path difference
Using formula of path difference
![\Delta x=2(L_(2)-L_(1))](https://img.qammunity.org/2020/formulas/physics/college/3frkc4eykm7pu3w37ohrukts6ybq3ftuh9.png)
Put the value into the formula
![\Delta x =2((46.0-14.0)-14.0)](https://img.qammunity.org/2020/formulas/physics/college/cdrlhu6oobz6xuz9wot7dmqo99eul0m55b.png)
![\Delta x=36\ m](https://img.qammunity.org/2020/formulas/physics/college/sf6ks87yjnavmn9x3m1gxnu33cclol9ehz.png)
We need to calculate the wavelength
Using formula of wavelength
![\lambda=(v)/(f)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ht8870sgew3xzobpsbkfyw8w1buxwdufdk.png)
Put the value into the formula
![\lambda=(343)/(240)](https://img.qammunity.org/2020/formulas/physics/college/ablzln9656k2l6tiyeclho1k8u1r0gf1ab.png)
![\lambda=1.42\ m](https://img.qammunity.org/2020/formulas/physics/college/j0goy0qqn27lmlxe3d0hpvvd5uvr7wnqkf.png)
We need to calculate the phase difference
Using formula of the phase difference
![\phi=(2\pi)/(\lambda)* \delta x](https://img.qammunity.org/2020/formulas/physics/college/e3i7m4rlpnrfn39lgfyivwbk8jr1kwh27l.png)
Put the value into the formula
![\phi=(2\pi)/(1.42)*36](https://img.qammunity.org/2020/formulas/physics/college/m0mdj749y7t8lenjua7pxnpt2ppjg0l49c.png)
![\phi=159.29\ rad](https://img.qammunity.org/2020/formulas/physics/college/djebyujxlu8kiwjgpwz1n4d96izztc0ik8.png)
![\phi\approx 68.2^(\circ)](https://img.qammunity.org/2020/formulas/physics/college/komjhkjajh2jbkd8hnycoqi3wn38rctv85.png)
Hence, The phase difference between the reflected waves when they meet at the tuning fork is 159.29 rad.