Answer:
A.
![v_(x)=21.4m/s](https://img.qammunity.org/2020/formulas/physics/college/67fd0f27bo5nsxq9mojhvaxv2j7kwoa9xr.png)
![v_(y)=26.42m/s](https://img.qammunity.org/2020/formulas/physics/college/xc6uc24mwth5gihzz4sd6vs5bdzapiroqm.png)
B.
![t=2.7s](https://img.qammunity.org/2020/formulas/physics/college/ef3igijo0k6z0ur2nwannbg5tk9cu5p5hy.png)
C.
![y_(max) =35.61m](https://img.qammunity.org/2020/formulas/physics/college/6sb9gg18e5xq3p9uzs31189evbkct6v1g9.png)
D.
![x=115.34m](https://img.qammunity.org/2020/formulas/physics/college/a0j8508yq57t7xoxamxxmv1hgk7fyzkanh.png)
E.
![a_(x)=0](https://img.qammunity.org/2020/formulas/physics/college/x4kuxptur1y5e5v5ak6ob08nr1zb0vhkg7.png)
![a_(y)=-9.8m/s^2=g](https://img.qammunity.org/2020/formulas/physics/college/3uq0mfcfm53khwpxvctc629giur1eu1vy4.png)
F.
![v_(y)=0](https://img.qammunity.org/2020/formulas/physics/high-school/yzhtrn13c9n8axvd5s4b5lfdnpmk7ss61s.png)
![v_(x)=21.4m/s](https://img.qammunity.org/2020/formulas/physics/college/67fd0f27bo5nsxq9mojhvaxv2j7kwoa9xr.png)
Step-by-step explanation:
From the exercise our initial values are:
![v_(o)=34m/s](https://img.qammunity.org/2020/formulas/physics/college/30lsbswf2pjgdp456c63p4tbolnurj8y0y.png)
![\alpha=51º](https://img.qammunity.org/2020/formulas/physics/college/5j3tob9a8j85j9mp1l24l64yj5257ncdgu.png)
A. The horizontal and vertical components are:
![v_(x)=34cos(51)=21.4m/s](https://img.qammunity.org/2020/formulas/physics/college/7fdjvixd8ovfz7zxp3m6361461c0adtkug.png)
![v_(y)=34sin(51)=26.42m/s](https://img.qammunity.org/2020/formulas/physics/college/vmlro5boa5wl6hynvdqcjbz3re20fbwtpm.png)
B. At maximum height the y-component of velocity becomes 0
![v_(y)=v_(o)+a_(y)t](https://img.qammunity.org/2020/formulas/physics/college/jevcvy8n65fkvkzcthzqtsppooih3k35ik.png)
![0=26.42-9.8m/s^2*t](https://img.qammunity.org/2020/formulas/physics/college/drh58flgr5dr07nhrf59mtbo87yyy8udic.png)
![t=2.7s](https://img.qammunity.org/2020/formulas/physics/college/ef3igijo0k6z0ur2nwannbg5tk9cu5p5hy.png)
C. The maximum height above the ground is:
![v_(y) ^(2)=v_(o)^2+2a_(y)(y-y_(o))](https://img.qammunity.org/2020/formulas/physics/college/vctr3lt4bbm6uj3379kmwk04i6tsalywtd.png)
At maximum height the y-component of velocity becomes 0
![0=(26.42)^2-2(9.8)y](https://img.qammunity.org/2020/formulas/physics/college/nxocprae026kgwrvtmydz1lq21ulpsadv8.png)
![y=(-(26.42)^2)/(-2(9.8))=35.61m](https://img.qammunity.org/2020/formulas/physics/college/j03ouunao3tc75fcrwxt1gr6winwwuo6f8.png)
D. To find how dar from its firing point does the sell land we need to calculate how much time does it take to do it first
![y=y_(o)+v_(oy)t+(1)/(2)gt^2](https://img.qammunity.org/2020/formulas/physics/college/qkgulqbn272rvb2vuzbc1y457oz3xr5i7e.png)
When the shell land y=0
![0=0+(26.42)t-(1)/(2)(9.8)t^2](https://img.qammunity.org/2020/formulas/physics/college/vzy5dok2ibudbvav0i09buox42danakc7j.png)
Solving the quadratic equation for t
or
![t=5.39s](https://img.qammunity.org/2020/formulas/physics/college/b9rdfsxgcex9ft55ohure59nyjfa7pk7cf.png)
Since time can not be 0 t=5.39s
![x=v_(ox)t=(21.4m/s)(5.39s)=115.34m](https://img.qammunity.org/2020/formulas/physics/college/ej39opuhd1bkgt6k6j8g04huiyxan25v4v.png)
E. Since the velocity at the horizontal component is constant
![a_(x)=0](https://img.qammunity.org/2020/formulas/physics/college/x4kuxptur1y5e5v5ak6ob08nr1zb0vhkg7.png)
The vertical acceleration of the shell is gravity
![g=-9.8m/s^2](https://img.qammunity.org/2020/formulas/physics/middle-school/diwdw9onohnjuunhmqtzrdahfnrqi75cie.png)
F. At highest point the vertical component is 0. The shell stops going up ans start to go down
![v_(y)=0](https://img.qammunity.org/2020/formulas/physics/high-school/yzhtrn13c9n8axvd5s4b5lfdnpmk7ss61s.png)
![v_(x)=v_(oy)+a_(x)t](https://img.qammunity.org/2020/formulas/physics/college/d9dojbwlop8s0chq2quaor498jh7jbz7ig.png)
Since
![a_(x)=0](https://img.qammunity.org/2020/formulas/physics/college/x4kuxptur1y5e5v5ak6ob08nr1zb0vhkg7.png)
![v_(x)=21.4m/s](https://img.qammunity.org/2020/formulas/physics/college/67fd0f27bo5nsxq9mojhvaxv2j7kwoa9xr.png)