Explanation:
The point-slpe form of an equation of a line:
![y-y_1=m(x-x_1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lwv5ftdd36i4idvu50qxfdgwxhdby4wlt5.png)
m - slope
(x₁, y₁) - point on a line
The formula of a slope:
![m=(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fc06wy5n2hf2a0hmyba6df4ibmxk1cn53a.png)
(x₁, y₁), (x₂, y₂) - points on a line
We have the points (3, 0) and (-3, -6).
Calculate the slope:
![m=(-6-0)/(-3-3)=(-6)/(-6)=1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/p1wmyzuf4sk0txdefiyc5qr00o50bpv8qk.png)
Put the value of the slope and the coordinates of the point (3, 0) or (03, 06) to the equation of a line:
FOR (3, 0):
![y-0=1(x-3)\to y=1(x-3)\to y=x-3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3h54d3j48imq4ltqu78ukfimbl0oyk3hap.png)
FOR (-3, -6):
![y-(-6)=1(x-(-3))\to y+6=1(x+3)\to y+6=x+3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/vj8ggtcb5hni06vtahqbl4d9taafpuz69n.png)