218k views
2 votes
What is the wavelength and frequency of a photon emitted by transition of an electron from a n- orbit to a n-1 orbit'?

User Abiratsis
by
5.3k points

1 Answer

4 votes

Answer:


\lambda=9.12* 10^(-8)}* \frac {{{{(n-1)}^2}* n^2}}{1-2n}\ m


\\u=3.29* 10^(15)\frac{1-2n}{{{(n-1)}^2}* n^2}}\ s^(-1)

Step-by-step explanation:


E_n=-2.179* 10^(-18)* (1)/(n^2)\ Joules

For transitions:


Energy\ Difference,\ \Delta E= E_f-E_i =-2.179* 10^(-18)((1)/(n_f^2)-(1)/(n_i^2))\ J=2.179* 10^(-18)((1)/(n_i^2) - (1)/(n_f^2))\ J


n_i=n\ and\ n_f=n-1

Thus solving it, we get:


\Delta E=2.179* 10^(-18)((1)/(n^2) - \frac{1}{{(n-1)}^2})\ J


\Delta E=2.179* 10^(-18)(\frac{{(n-1)}^2-n^2}{{{(n-1)}^2}* n^2}})\ J


\Delta E=2.179* 10^(-18)(\frac{n^2+1-2n-n^2}{{{(n-1)}^2}* n^2}})\ J


\Delta E=2.179* 10^(-18)(\frac{1-2n}{{{(n-1)}^2}* n^2}})\ J

Also,
\Delta E=\frac {h* c}{\lambda}

Where,

h is Plank's constant having value
6.626* 10^(-34)\ Js

c is the speed of light having value
3* 10^8\ m/s

So,


\frac {h* c}{\lambda}=2.179* 10^(-18)(\frac{1-2n}{{{(n-1)}^2}* n^2}})\ J


\lambda=\frac {6.626* 10^(-34)* 3* 10^8}{2.179* 10^(-18)}* \frac {{{{(n-1)}^2}* n^2}}{{1-2n}}\ m

So,


\lambda=9.12* 10^(-8)}* \frac {{{{(n-1)}^2}* n^2}}{1-2n}\ m

Also,
\Delta E=h* \\u

So,


h* \\u=2.179* 10^(-18)\frac{1-2n}{{{(n-1)}^2}* n^2}}


\\u=\frac {2.179* 10^(-18)}{6.626* 10^(-34)}\frac{1-2n}{{{(n-1)}^2}* n^2}}\ s^(-1)


\\u=3.29* 10^(15)\frac{1-2n}{{{(n-1)}^2}* n^2}}\ s^(-1)

User Talib Daryabi
by
6.6k points