Answer:

General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Algebra II
- Distance Formula:

Explanation:
Step 1: Define
Find points from graph.
Point R(-2, -4)
Point S(-8, -6)
Step 2: Find distance d
Simply plug in the 2 coordinates into the distance formula to find distance d
- Substitute in points[DF]:

- (Parenthesis) Add:

- [√Radical] Exponents:

- [√Radical] Add:

- [√Radical] Simplify:
