Answer:r=12.02 cm
Step-by-step explanation:
Given
![q_1=31 mC=31* 10^(-3)C](https://img.qammunity.org/2020/formulas/physics/college/9czrts2g5smkdlkackghk1j72o5wzng3id.png)
Placed at x=8 cm
![q_2=-70 mc=-70* 10^(-3) C](https://img.qammunity.org/2020/formulas/physics/college/3k0om4v4gm3y39wz7pgfxc0vc2h0ztyxal.png)
placed at a distance, suppose r
Electric field due to positive charge will be away from the origin and electric field due to negative charge is towards the origin
Thus net effect will be zero
![E=(kq)/(r^2)](https://img.qammunity.org/2020/formulas/physics/college/3gpqcsdcb2dw2emm1uutl5bggv9v5r5zs5.png)
![E_1=(9* 10^(9)* 31* 10^(-3))/(0.08^2)](https://img.qammunity.org/2020/formulas/physics/college/9ngwa1b2l3iylielvu1myaismuiz3nsuyi.png)
![E_2=(9* 10^(9)* 70* 10^(-3))/(r^2)](https://img.qammunity.org/2020/formulas/physics/college/pco5kvzh5atdn7962hpxkys8r6m88x6l8x.png)
Equate
![E_1=E_2](https://img.qammunity.org/2020/formulas/physics/college/zdw3lik1ftiyrj7z1dexj67be252a7pq8c.png)
![(31)/(8^2)=(70)/(r^2)](https://img.qammunity.org/2020/formulas/physics/college/frgfmcn32do327cox31jr93m945w64njor.png)
![r=8* \sqrt{(70)/(31)}](https://img.qammunity.org/2020/formulas/physics/college/5lk8irbntr1ncxp5do66oldg69mq94gi6d.png)
r=12.02 cm