181k views
2 votes
The wavefunction of a particle confined to the x axis is ψ = e-x for x > 0 and ψ = ex for x <0. Show that the wavefunction is normalized and calculate the probablilty of finding the particle betweenx-0.5 and x 0.5.

1 Answer

2 votes

First part

The wavefunction is


\psi = \left \{ {{e^(-x) \ \ x\ge0} \atop {e^(x) \ \ x<0}} \right.

As we know, the wavefunction is normalized if:


\int\limits^(\infty ) _(-\infty )  \, dx &nbsp;=1

Lets prove it:


\int\limits^(\infty ) _(-\infty )  \, dx &nbsp;= \int\limits^(0 ) _(-\infty )  \, dx &nbsp;+ \int\limits^(\infty ) _(0 ) \psi(x) \, dx


\ \int\limits^(0 ) _(-\infty ) {(e^(x) )^2} \, dx &nbsp;+ \int\limits^(\infty ) _(0 ) {(e^(-x)) ^2} \, dx

Lets take the first integral


\ \int\limits^(0 ) _(-\infty ) {(e^(x) )^2} \, dx

we can use the substitution


x = -y \\\\dx = - dy

when x= 0 then y = 0, and when
x= - \infty ,
y=\infty


\ \int\limits^(0 ) _(\infty ) {(e^(-y) )^2} \, (-dy)


\ - \int\limits^(0 ) _(\infty ) {(e^(-y) )^2} \, dy

inverting the limits of integration to take care of the minus sign


\ \int\limits^( \infty) _(0 ) {(e^(-y) )^2} \, (dy)

but this is the second integral!!!

so


\int\limits^(\infty ) _(-\infty )  \, dx &nbsp;= 2 * \int\limits^(\infty ) _(0 ) {{e^(-2x) } \, dx

now, we can see that


(d)/(dt) e^(-2x) = -2 e^(-2x)

so


(1)/(-2) (d)/(dt) e^(-2x) = e^(-2x)


\int\limits^(\infty ) _(-\infty ) \psi(x) \, dx &nbsp;= 2 * \int\limits^(\infty ) _(0 ) { (1)/(-2) &nbsp;* (d)/(dt) e^(-2x) } \, dx


\int\limits^(\infty ) _(-\infty )  \, dx &nbsp;= (2)/(-2) &nbsp;* &nbsp; \int\limits^(\infty ) _(0 ) { &nbsp;(d)/(dt) e^(-2x) } \, dx


\int\limits^(\infty ) _(-\infty )  \, dx &nbsp;= -1 &nbsp;* &nbsp;[ \right e^(-2x) \left ] ^(\infty ) _(0 )


\int\limits^(\infty ) _(-\infty ) \psi(x) \, dx &nbsp;= -1 &nbsp;* [ ( \lim_(x\rightarrow \infty ) e^(-2x) ) -e^(-2*0) ]


\int\limits^(\infty ) _(-\infty ) ^2 \, dx &nbsp;= -1 &nbsp;* ( 0 - 1)


\int\limits^(\infty ) _(-\infty ) \psi(x) \, dx &nbsp;= 1

This is what we wanted to show!

Second part

We just need to obtain
p(|x| \le 0.5):


p(|x| \le 0.5) = \int\limits^(0.5 ) _(-0.5 )  \, dx

We can use the same approach:


\int\limits^(0.5 ) _(-0.5 )  \, dx &nbsp;= \int\limits^(0 ) _(-0.5 ) \psi(x) \, dx &nbsp;+ \int\limits^(0.5 ) _(0 ) ^2 \, dx


\ \int\limits^(0 ) _(-0.5 ) {(e^(x) )^2} \, dx &nbsp;+ \int\limits^(0.5 ) _(0 ) {e^(-x) ^2} \, dx


p(|x| \le 0.5) = 2 * \int\limits^(0.5) _(0 ) {{e^(-2x) } }\, dx


p(|x| \le 0.5) = 2 * \int\limits^(0.5) _(0 ) {(1)/(-2) (d)/(dt) e^(-2x) } \, dx


p(|x| \le 0.5) = -1 * &nbsp; [ \right e^(-2x) \left ] &nbsp;^(0.5) _(0 )


p(|x| \le 0.5) = -1 * &nbsp; (e^(-1) - 1)


p(|x| \le 0.5) = 0.6321

User Kubusz
by
6.1k points