Step-by-step explanation:
Given that,
Initial velocity = 19.7 m/s
Angle = 45°
(a). We need to calculate the velocity at the top of the trajectory
Using formula of velocity at the top of the trajectory
![v_(y)=u\cos\theta](https://img.qammunity.org/2020/formulas/physics/college/hps7gqle0f9q52w6un1oiegmr8k6gu2ap7.png)
Put the value into the formula
![v_(y)=19.7\cos45](https://img.qammunity.org/2020/formulas/physics/college/x5tcxx1a1m2us0lwl7svfgtmb42icw5i91.png)
![v_(y)=13.93\ m/s](https://img.qammunity.org/2020/formulas/physics/college/a54vrojfdobhpkm98eye6tffa7ru4m7r5k.png)
The top of the trajectory is 13.93 m/s.
(b). We need to calculate the maximum height
Using formula of height
![h=((u\sin\theta)^2)/(2g)](https://img.qammunity.org/2020/formulas/physics/college/4nfrdm75c98w7r2lzp5zuc3fr8plyp4xgx.png)
Put the value into the formula
![h=((19.7\sin45)^2)/(2*9.8)](https://img.qammunity.org/2020/formulas/physics/college/cadlk6moub365z1zh1s2a5vrzlhrjh1o3p.png)
![h=9.90\ m](https://img.qammunity.org/2020/formulas/physics/college/iuq6trbbs0uyv29elrwli5n1ccf074k42v.png)
The maximum height is 9.90 m.
(c). We need to calculate the range
Using formula of range
![R=(u^2\sin2\theta)/(g)](https://img.qammunity.org/2020/formulas/physics/college/yun92jjk7tyyp9uqzk4lebwd0arn46d6me.png)
Put the value into the formula
![R=(19.7^2*\sin2*45)/(9.8)](https://img.qammunity.org/2020/formulas/physics/college/qkau0zpr14ldb8p5ydm54b7f2409575cm1.png)
![R=39.6\ m](https://img.qammunity.org/2020/formulas/physics/college/86kykub5x7zg0re0m9p5tgqfzb6hznujrj.png)
The range is 39.6 m.
(d). We need to calculate the time
Using formula of time
![t=(2u\sin\theta)/(g)](https://img.qammunity.org/2020/formulas/physics/college/qhh1lw1q1rzcoxij69g21yi3gnrlwznau1.png)
Put the value in to the formula
![t=(2*19.7\sin45)/(9.8)](https://img.qammunity.org/2020/formulas/physics/college/p7zljrtf851t93ipxqj8fpa78w8viplk72.png)
![t=2.84\ sec](https://img.qammunity.org/2020/formulas/physics/college/2mgkzrerk3j2m1nzdzm85pzo7isbenb0yo.png)
The time is 2.84 sec.
Hence, This is the required solution.