Answer:
- the Rutherford age of the Earth is 5.942 x 10^9 years
Step-by-step explanation:
As the radioactive decay is an exponential decay, lets first remember how to solve an exponential decay problem.
In an exponential decay the quantity of substance N at time t is given by:
![N(t) = N_0 e^{-(t)/(\tau)}](https://img.qammunity.org/2020/formulas/physics/college/huq5faxzg2f7zcwukp4zaht0f7ssw8abgx.png)
where
is the initial quantity of substance and
is the mean lifetime of the substance.
For our problem we start with the same quantity of U-235 and U 238. Lets call this quantity as
.
The quantity of U-235 after a time t will be:
![^(U-235)N(t) = N_0 e^{-(t)/(\tau_(235))}](https://img.qammunity.org/2020/formulas/physics/college/97387et1zst4fxsu9maigl29ld37rydvg2.png)
and for U-238
![^(U-238)N(t) = N_0 e^{-(t)/(\tau_(238))}](https://img.qammunity.org/2020/formulas/physics/college/7ks8g8tekzi073sd2w9k0ikuur9zus4sz1.png)
Lets call the ratio between this two r. r will be:
![r(t) = (^(U-235)N(t))/(^(U-238)N(t)) = \frac{ N_0 e^{ -(t)/( \tau_(235) ) } }{ N_0 e^{ -(t)/( \tau_(238) ) } }](https://img.qammunity.org/2020/formulas/physics/college/t69w2vr95yk0ow854nps49p4lw3avupuid.png)
![r(t) = \frac{ e^{ -(t)/( \tau_(235) ) } }{ e^{ -(t)/( \tau_(238) ) } }](https://img.qammunity.org/2020/formulas/physics/college/i3pacqrmhz8hbus0xoh0o1nafc6qoji4ig.png)
![r(t) = e^{ -(t)/( \tau_(235) ) + (t)/( \tau_(238) ) }](https://img.qammunity.org/2020/formulas/physics/college/zhuvwer5ak1tfr8mbe0118nawa9nwe6naz.png)
![ln ( r(t) ) = (t)/( \tau_(238) ) - (t)/( \tau_(235) )](https://img.qammunity.org/2020/formulas/physics/college/amvshxfrtugjou7qh388psripr3c64z18k.png)
![ln ( r(t) ) = t ( (1)/( \tau_(238) ) } -(1)/( \tau_(235) ) )](https://img.qammunity.org/2020/formulas/physics/college/wsxzuycvru5gw5vun9sr1lilwzz1rjov5v.png)
![(ln ( r(t) ))/( ( (1)/( \tau_(238) ) -(1)/( \tau_(235) ) ) = t](https://img.qammunity.org/2020/formulas/physics/college/r6e70vox7df4jinqdliwzwk0whb789iwuo.png)
Now, in the present time the abundance of U-235 is 0.720% and the abundance of U-238 is 99.274%. This gives us a ratio of:
![r(t_(present)) =(0.720 \ \%)/(99.274 \ \%) = 7.2526 \ 10^(-3)](https://img.qammunity.org/2020/formulas/physics/college/jn7vt18asw2tej9uu4ijp4vekayzy9a4dv.png)
the mean lifetime of U-235 is
![\tau_(235) = 1.016 \ 10^9 years](https://img.qammunity.org/2020/formulas/physics/college/p190ct9hg521dj7xjfbepjkwhz0oh0ohlj.png)
and the mean lifetime of U-238 is
![\tau_(238) = 6.445 \ 10^9 years](https://img.qammunity.org/2020/formulas/physics/college/eqic4gechx4xcfgjszwegrxp4i5fucgp6i.png)
so
![(1)/( \tau_(238) ) } -(1)/( \tau_(235) ) = (1)/( 6.445 \ 10^9 years ) } -(1)/( 1.016 \ 10^9 years ) = -8.2909 \ 10^(-10) (1)/(year)](https://img.qammunity.org/2020/formulas/physics/college/d3v91zmixmstq1wmsfkbw72f54xj2womc3.png)
Taking all this in consideration, we get:
![t_(present)=(ln ( r(t_(present)) ))/( ( (1)/( \tau_(238) ) -(1)/( \tau_(235) ) ))](https://img.qammunity.org/2020/formulas/physics/college/7sx50gomoiszt3gsdrk2jlp5kb1ln1o9vy.png)
![t_(present)=(ln ( 7.2526 \ 10^(-3) ))/(-8.2909 \ 10^(-10) (1)/(year))](https://img.qammunity.org/2020/formulas/physics/college/adzwg6p66n42pkfwkgxmap56602l00t5r2.png)
![t_(present)=( 4.926 )/(-8.2909 \ 10^(-10) (1)/(year))](https://img.qammunity.org/2020/formulas/physics/college/egltai0eq65mib48hmndip6k00wn2ikww6.png)
![t_(present)= 5.942 \ 10^9 years](https://img.qammunity.org/2020/formulas/physics/college/olfnnk2z5ngavnb2rydvt65u3trydcthno.png)