Answer:
x=5
Explanation:
We are given that
![f(x)=3x+30](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ldkv4t88exk8v1wlfb2mwkth9hqvslud4q.png)
![g(x)=x^2+20](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ez7k0qkc5lalwtbvca6t7grwmq2fwe6qn1.png)
We have to find the positive integer value of x for which the quadratic function g(x) begin to exceed the linear function f(x).
![g(x) > f(x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/87c33avje6wtjrfugsdjtc8iy3niwgzrg4.png)
![x^2+20 > 3x+30](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tasbbo8x7l6npofqg24ligqwkwamqpz8f2.png)
![x^2+20-3x-30 >0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/eeo9716yyy7o8qtk6l1u022il9qj2de6nj.png)
![x^2-3x-10 > 0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/nz2ftvq8dtbrd9c0fn8cdf1k84y9vhy7hk.png)
![(x-5)(x+2) > 0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zgezjzwf9mwao61pqz9cxykov9s5fczkpl.png)
![x-5 > 0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/gkmtd7dt13w8pshdnlyn0x1iv9whlf7oxj.png)
![x > 5](https://img.qammunity.org/2020/formulas/mathematics/high-school/oc2mwy3g2p5dgq3x63r8717vl7zeubp9sn.png)
![x+2 > 0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/bywcj3dioeagnolhwz9jucnfou60dfviid.png)
![x >-2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wkaplalwtcwfeb53ffdg5tvs4prdgh6pfz.png)
Interval (
![5,\infty)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/azlfwajbx0pwacz1g8xdm9pyhsik0mnzay.png)
Therefore , g(x) exceed f(x) in the interval (
.
g(x) begin to exceed the linear function at x=5