Answer:
The simplest form is
or 4
Solution:
Given,
divided by
![2(1)/(24)](https://img.qammunity.org/2020/formulas/mathematics/college/1xy529jylfcfrkcfipr7ntpqu5plpn4fiu.png)
![8(1)/(6)](https://img.qammunity.org/2020/formulas/mathematics/college/qbni79zukn5j1z0kvi4dp078ic5rf5c0os.png)
![2(1)/(24)](https://img.qammunity.org/2020/formulas/mathematics/college/1xy529jylfcfrkcfipr7ntpqu5plpn4fiu.png)
![(8*6+1)/(6)](https://img.qammunity.org/2020/formulas/mathematics/college/ykw9d4wpxknmg1aia0rkah2oezhagnqa5q.png)
![(2*24+1)/(24)](https://img.qammunity.org/2020/formulas/mathematics/college/5p45g9k52nsnwkz3uyy78qkzzjribm27qm.png)
we get,
![(49)/(6)/(49)/(24)](https://img.qammunity.org/2020/formulas/mathematics/college/2v3aawgkcain85ks89132uaiw97221a2fn.png)
When two terms are in division, we have to reciprocate the second term,
The reciprocal of
![(49)/(24) is (24)/(49)](https://img.qammunity.org/2020/formulas/mathematics/college/p2922it9vdnw4bp9wyxl32c49h5gkwpge9.png)
Substituting the reciprocal form of
in the equation we get,
![(49)/(6)* (24)/(49)](https://img.qammunity.org/2020/formulas/mathematics/college/qzgqsq4lo1l7z0lyspw49fhxc3wk0ofsqo.png)
On dividing the possible terms we get,
![(4)/(1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lcoo1e1wyycvofwta964ruix77l6dj3k31.png)
The simplest form of the given value is
or 4