Answer:
![P(t) = \displaysyle(VF)/(r)\bigg(1 - e^{(-rt)/(V)}\bigg) + Ae^{(-rt)/(V)}](https://img.qammunity.org/2020/formulas/mathematics/college/miwrgxhjvgifyl3e4e6qbef8qb9lipr5po.png)
Explanation:
We are given that pollution in a lake is given by the differential equation:
![\displaystyle(dP(t))/(dt) = -\displaystyle(r)/(V)P(t) + F](https://img.qammunity.org/2020/formulas/mathematics/college/7h9ja2gig8pkq1ymviheffvbudcvs4p0za.png)
where, P(t) is the pollution at time t, r is the flow rate, V is the volume of lake and F is the mass of pollution dumped.
The given differential equation can be written as:
![\displaystyle(dP(t))/(dt) + \displaystyle(r)/(V)P(t) = F](https://img.qammunity.org/2020/formulas/mathematics/college/f7o65oaazqxk53vmqvtqlvbkretqlsmp2v.png)
Comparing to linear differential equation:
,
we get,
![a(t) = \displaystyle(r)/(V), b(t) = F](https://img.qammunity.org/2020/formulas/mathematics/college/9mh3jyavhgea6yv6xlwjpxx4mddz7aayou.png)
Integrating factor:
![e^(\int a(t)dt) = e^{(r)/(V)dt} = e^{(rt)/(V)}](https://img.qammunity.org/2020/formulas/mathematics/college/vn1wl65dn6xc0n827wze3uhpvfcvci349c.png)
Solution:
![P(t)\text{Integrating Factor} = \int b(t)\text{Integrating Factor} + C\\\\P(t)e^{(rt)/(V)}= \int Fe^{(rt)/(V)}dt + C](https://img.qammunity.org/2020/formulas/mathematics/college/gsrhzin62ui1imnwb5a8mnxm89lyjvnjjq.png)
,
where C is the constant of integration.
Now, we are given that P(0) = A
putting these value in the above equation, we get,
![A = \displaystyle(VF)/(r) + C\\\\C = A - \displaystyle(VF)/(r)](https://img.qammunity.org/2020/formulas/mathematics/college/mgrz4zv7fbibs3c9q9z7tin2p1cdbstyzw.png)
Putting this value of C in equation, we get:
![P(t)e^{(rt)/(V)} = \displaysyle(VF)/(r)e^{(rt)/(V)} + A - \displaystyle(VF)/(r)](https://img.qammunity.org/2020/formulas/mathematics/college/pur2uywc8xtecjitgpcvpoy43xdktiqs5s.png)
Dividing the equation by
, we get:
![P(t) = \displaysyle(VF)/(r) + \bigg(A - \displaystyle(VF)/(r)\bigg)e^{(-rt)/(V)}](https://img.qammunity.org/2020/formulas/mathematics/college/6exim4pi8evkn6k87zujnoetxhu0eslyps.png)
![P(t) = \displaysyle(VF)/(r)\bigg(1 - e^{(-rt)/(V)}\bigg) + Ae^{(-rt)/(V)}](https://img.qammunity.org/2020/formulas/mathematics/college/miwrgxhjvgifyl3e4e6qbef8qb9lipr5po.png)