97.4k views
1 vote
Using separation of variables, solve y′=(y−2)^2 sin(4x)

1 Answer

0 votes

Answer:


y(x)=(2*(cos(4x)+2-4*C_1))/(cos(4x)-4C_1)

Explanation:

Rewrite the equation as:


(dy(x))/(dx)=(y-2)^(2) *sin(4x) (1)

divide both sides of (1) by
(y-2)^(2)


((dy)/(dx) )/((y-2)^(2) ) =sin(4x)

Now integrate both sides:


\int\ (1)/((y-2)^(2) ) } \, dy = \int\ sin(4x) } } dx

Solving the left side integral:

Let:


u=y-2\\du=dy

Replacing
u and
du


\int\ (du)/(u^(2) )  } }=-(1)/(u)


u=y-2 then:


-(1)/(y-2)

Solving the right side integral:


\int\ sin(4x) } } dx=-(1)/(4) cos(4x)+C_1

Now we got this:


-(1)/(y-2)=-(1)/(4) cos(4x)+C_1

Finally, solving for y:


y=(2*(cos(4x)+2-4*C_1))/(cos(4x)-4C_1)

User Machzqcq
by
5.4k points