75.1k views
1 vote
Use separation of variables to solve dy dx − tan x = y2 tan x with y(0) = √3. Find the value of c in radians, not degrees

User Alltej
by
8.2k points

1 Answer

5 votes

Answer:


y(x)=tan(-log(cos(x))+(\pi )/(3) )

Explanation:

Rewrite the equation as:


(dy(x))/(dx)-tan(x)=y(x)^(2) *tan(x)

Isolating
(dy)/(dx)


(dy)/(dx) =tan(x)+tan(x)*y^(2)

Factor:


(dy)/(dx) =tan(x)*(1+y^(2) )

Dividing both sides by
(1+y^(2) ) and multiplying them by
dx


(dy)/(1+y^(2) ) =tan(x)dx

Integrate both sides:


\int\ (dy)/(1+y^(2) ) = \int\ tan(x)  dx

Evaluate the integrals:


arctan(y)=-log(cos(x))+C_1

Solving for y:


y(x)=tan(-log(cos(x))+C_1)

Evaluating the initial condition:


y(0)=√(3) =tan(-log(cos(0))+C_1)=tan(-log(1)+C_1)=tan(0+C_1)


√(3) =tan(C_1)\\arctan(√(3) )=C_1\\60=C_1

Converting 60 degrees to radians:


60degrees*(\pi )/(180degrees) =(\pi )/(3)

Replacing
C_1 in the diferential equation solution:


y(x)=tan(-log(cos(x))+(\pi )/(3) )

User Sergey Snegirev
by
8.5k points