Answer:
a) K = 0.09, V = 0.1
b)
![y-intercept= \displaystyle(1)/(V)](https://img.qammunity.org/2020/formulas/mathematics/college/yteehsfgkomiqj558ygx65nbj7alszosfo.png)
![x-intercept= -\displaystyle(1)/(K)](https://img.qammunity.org/2020/formulas/mathematics/college/lldgm16ecs0ink23rbtx32upwrkm860hn9.png)
Explanation:
We are given that:
![f(x) = \displaystyle(K)/(V)x + \displaystyle(1)/(V)](https://img.qammunity.org/2020/formulas/mathematics/college/nd4dnq7b5vgfrfaoh1iqazun0i2jv5che1.png)
a) If we compare the above equation with the given equation:
, then, we get:
![\displaystyle(1)/(V) = 10\\\\V = \displaystyle(1)/(10) = 0.1\\\\\displaystyle(K)/(V) = 0.9\\\\K* \displaystyle(1)/(0.1) = 0.9\\\\K = 0.09](https://img.qammunity.org/2020/formulas/mathematics/college/ut80hyuuo6twth3nmvy73eahxnuxfyf9x5.png)
K = 0.09, V = 0.1
b)
![f(x) = \displaystyle(K)/(V)x + \displaystyle(1)/(V)](https://img.qammunity.org/2020/formulas/mathematics/college/nd4dnq7b5vgfrfaoh1iqazun0i2jv5che1.png)
y-intercept is the value when x = 0. Putting x = 0,
![y-intercept= \displaystyle(1)/(V)](https://img.qammunity.org/2020/formulas/mathematics/college/yteehsfgkomiqj558ygx65nbj7alszosfo.png)
x-intercept is the value when y = 0. Putting y = 0, we get,
![0 = \displaystyle(K)/(V)x + \displaystyle(1)/(V)\\\\x = \displaystyle(V)/(K)* -\displaystyle(1)/(V)\\\\x = -\displaystyle(1)/(K)](https://img.qammunity.org/2020/formulas/mathematics/college/dnesowgojn5kbg4nzdlaj0iw2hpfxypd7l.png)