Answer: complex equations has n number of solutions, been n the equation degree. In this case:
![Z=\frac{\sqrt[8]{2} }{\sqrt[4]{2}} e^(i11,25°)](https://img.qammunity.org/2020/formulas/mathematics/college/48xfpkrv01k1340qb5v71dqk4r938mu9jj.png)
![Z=\frac{\sqrt[8]{2} }{\sqrt[4]{2}} e^(i101,25°)](https://img.qammunity.org/2020/formulas/mathematics/college/d5ba6g9kggtucobjkprl937p2um07yhhyq.png)
![Z=\frac{\sqrt[8]{2} }{\sqrt[4]{2}} e^(i191,25°)](https://img.qammunity.org/2020/formulas/mathematics/college/79vpxxqkps0li6k1o3cbcf8c8t4l24o5w2.png)
![Z=\frac{\sqrt[8]{2} }{\sqrt[4]{2}} e^(i281,25°)](https://img.qammunity.org/2020/formulas/mathematics/college/h5nbyzgej20nvzkegbwi52mgtvd91pvsso.png)
![Z=\frac{\sqrt[8]{2} }{\sqrt[4]{2}} e^(i78,75°)](https://img.qammunity.org/2020/formulas/mathematics/college/b7ng51gg2h141m9eur3eyb0etgzgh2ulg7.png)
![Z=\frac{\sqrt[8]{2} }{\sqrt[4]{2}} e^(i168,75°)](https://img.qammunity.org/2020/formulas/mathematics/college/gt9154jr1bkao7r5f5mf6kux6zwszea6yy.png)
![Z=\frac{\sqrt[8]{2} }{\sqrt[4]{2}} e^(i258,75°)](https://img.qammunity.org/2020/formulas/mathematics/college/nod2jcebncznyuiufuyo4mke0fu1m5sup9.png)
![Z=\frac{\sqrt[8]{2} }{\sqrt[4]{2}} e^(i348,75°)](https://img.qammunity.org/2020/formulas/mathematics/college/t9zq09l9n5cbrcmiwr08sfkxaoydlkzwuc.png)
Explanation:
I start with a variable substitution:
![Z^(4) = X](https://img.qammunity.org/2020/formulas/mathematics/college/w86vjte9f5jgsd2qayxeplfvdcz9ltj1kp.png)
Then:
![2X^(2)-2X+1=0](https://img.qammunity.org/2020/formulas/mathematics/college/6kmfaxf406ya4c8zj8i9njopn4y5vlbuy8.png)
Solving the quadratic equation:
![X_(1) =(2+√(4-4*2*1) )/(2*2) \\X_(2) =(2-√(4-4*2*1) )/(2*2)](https://img.qammunity.org/2020/formulas/mathematics/college/suli68cdi5m57zs0l5ov9baexugbmzlcya.png)
![X=\left \{ {{0,5+0,5i} \atop {0,5-0,5i}} \right.](https://img.qammunity.org/2020/formulas/mathematics/college/tm3p909nxgif0mjzdd49kjqzr958r1vhu6.png)
Replacing for the original variable:
![Z=\sqrt[4]{0,5+0,5i}](https://img.qammunity.org/2020/formulas/mathematics/college/b1dxal3lni6xuyzxwq9yykz0l9kw7jpflq.png)
or
![Z=\sqrt[4]{0,5-0,5i}](https://img.qammunity.org/2020/formulas/mathematics/college/9m9nvj914ctnzq2a17nf42zjq8e3r1boeo.png)
Remembering that complex numbers can be written as:
![Z=a+ib=|Z|e^(ic)](https://img.qammunity.org/2020/formulas/mathematics/college/2gy8ykanp620fjnt7is7b0er14mvjw9h3n.png)
Using this:
![Z=\left \{ {{{(√(2))/(2) e^(i45°) } \atop {{(√(2))/(2) e^(i-45°) }} \right.](https://img.qammunity.org/2020/formulas/mathematics/college/oaqdf8nz7enfvkdlmztbbyb570wlcizq8a.png)
Solving for the modulus and the angle:
![Z=\left \{ {{\sqrt[4]{(√(2))/(2) e^(i45)} = \sqrt[4]{(√(2))/(2) } \sqrt[4]{e^(i45)} } \atop {\sqrt[4]{(√(2))/(2) e^(i-45)} = \sqrt[4]{(√(2))/(2) } \sqrt[4]{e^(i-45)} }} \right.](https://img.qammunity.org/2020/formulas/mathematics/college/kgpyn5obzzi6dgsns9orj5jqp99az0dklg.png)
The possible angle respond to:
![RAng_(12...n) =(Ang +360*(i-1))/(n)](https://img.qammunity.org/2020/formulas/mathematics/college/tdn13iahbgsve0rb8qsi59xfghkmvc6r4k.png)
Been "RAng" the resultant angle, "Ang" the original angle, "n" the degree of the root and "i" a value between 1 and "n"
In this case n=4 with 2 different angles: Ang = 45º and Ang = 315º
Obtaining 8 different angles, therefore 8 different solutions.