Answer:
The area of the rectangle is 20 sq .units.
Given:
(-8, -2), (-3,-2), (-3,-6), and (-8, -6)
Solution:
The area of the rectangle ‘A’ is given by the formula:
Area = Length × Width
Now, we have to find the sides of the rectangle.
The sides of the rectangle include s1, s2, s3, and s4.
Let’s now assume the points as:
![(x1, y1) = (-8, -2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lvs7d2iebg6pw593fr21gbchrljwx3f9cr.png)
![(x2, y2) = (-3,-2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/e29va8aqoyieirtbqycmmn9x0n1gvy210k.png)
![(x3, y3) = (-3,-6)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2hom2u7fgaazoj56etgy8iwsl0c527pc36.png)
![(x4, y4) = (-8, -6)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1o9yx0qsuzul7o0zw9kv8ps3en9hxetchn.png)
The side s1 is:
![s 1=\sqrt{(x 2-x 1)^(2)+(y 2-y 1)^(2)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/icli5pnto8v1vlln0i9pjet5ym384zqzmb.png)
On substituting the values,
![\Rightarrow s 1=\sqrt{(-3+8)^(2)+(-2+2)^(2)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/597o863m17efsi83h2iiht5y6qz96d903e.png)
![\Rightarrow s 1=\sqrt{(5)^(2)+(0)^(2)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/860eeraj0mfbf9sx7lfs6d3bsmpo2q5ycg.png)
![\Rightarrow s 1=√(25)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/mol1bz8l4surgkrkspxdlu613yu9jteocr.png)
![\therefore s 1=5 \text { units }](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3flt851uhj3188w1w1hlwliidfxtysi8ul.png)
The side s2 is:
![s 2=\sqrt{(x 3-x 2)^(2)+(y 3-y 2)^(2)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/gtiaznciqea68t2w9b6vxsd29rgkd80p99.png)
On substituting the values,
![\Rightarrow s 2=\sqrt{(-3+3)^(2)+(-6+2)^(2)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lijhgnuqit0wsbc9anxhnvvd1mdpdi3q0k.png)
![\Rightarrow s 2=\sqrt{(0)^(2)+(4)^(2)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rxv2816ivu616z25oi1tleje2anczfkiio.png)
![\Rightarrow s 2=√(16)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/nw450btumdyp0s1w9sjiq54b45yxsr5pvf.png)
![\therefore s 2=4 \text { units }](https://img.qammunity.org/2020/formulas/mathematics/middle-school/11n67t9dtw6hg18vaa1wbt0cs0i2p6lz3g.png)
The side s3 is:
![s 3=\sqrt{(x 4-x 3)^(2)+(y 4-y 3)^(2)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wr3ehhun7b40r6raloqh639xkgwcxxlbcs.png)
On substituting the values,
![\Rightarrow s 3=\sqrt{(-8+3)^(2)+(-6+6)^(2)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/syfvvd3rpfqt03g7ftcyvv2c3t2sba4ksh.png)
![\Rightarrow s 3=\sqrt{(5)^(2)+(0)^(2)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/n8s2sopc15k4cymww89hcg7d13h42dmq8r.png)
![\Rightarrow s 3=√(25)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9zl666igqrrhslenpn4tvx2glesaz6pdu3.png)
![\therefore s 3=5 \text { units }](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1oo659ahyxegxolm8udn0nlrq7sw9f4jv1.png)
The side s4 is:
![s 4=\sqrt{(x 1-x 4)^(2)+(y 1-y 4)^(2)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/musx5k1c5p6827s8kxvevs4sytgzb65b1z.png)
On substituting the values,
![\Rightarrow s 4=\sqrt{(-8+8)^(2)+(-2+6)^(2)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/f6jbootb7t6jcx203n4zrooghks46zef1j.png)
![\Rightarrow s 4=\sqrt{(0)^(2)+(4)^(2)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5ykmfymludieyh2aesg894ydp1iu3biu3p.png)
![\Rightarrow s 4=√(16)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yo2yp0zsab5j3dbnnkzn453z2yvywvqo2a.png)
![\therefore s 4=4 \text { units }](https://img.qammunity.org/2020/formulas/mathematics/middle-school/vd43cdwnzldzqxlujsj5tkvsdx8j1zllc1.png)
Now, the length of the given rectangle is 5 units and width of the given rectangle is 4 units.
The area of the rectangle is:
![\Rightarrow A r e a=4 * 5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xvh5usn39cxx9vkxi0srd3pxfs4nanxa15.png)
![\therefore A r e a=20 \ s q . \text { units }](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yiuewhvolyccx3q1o18wpvmpmqjbcfhs9i.png)