118k views
0 votes
Consider the eigenvalue decomposition of a symmetric matrix A. Prove that two eigenvectors Vị and V; associated with two distinct eigenvalues li and l; of A are mutually orthogonal; that is, v. Vj = 0

User Jon Glazer
by
4.6k points

1 Answer

2 votes

Lets consider the symmetric matrix
A, and the two eigenvectors
\vec{v}_i and
\vec{v}_j such as:


A \vec{v} _i = \lambda_i \vec{v} _i


A \vec{v} _j = \lambda_j \vec{v} _j

with


\lambda_i \\e \lambda_j.

The dot product between
\vec{v}_i and
\vec{v}_j can be obtained with:


\vec{v}_i \cdot   \vec{v}_j = (\vec{v}_i )^t \vec{v}_j

Using the first eigenvector equation we can find:


\vec{v}_i = (1)/(\lambda_i) A \vec{v} _i

Lets transpose it


(\vec{v}_i)^t = ((1)/(\lambda_i) A \vec{v} _i)^t


(\vec{v}_i)^t =   (\vec{v} _i)^t A^t (((1)/(\lambda_i))^t

as
\lambda_i is an scalar


(\vec{v}_i)^t =   (\vec{v} _i)^t A^t ((1)/(\lambda_i))

Now, as A is symmetric:


A^t = A

so


(\vec{v}_i)^t =   (\vec{v} _i)^t A ((1)/(\lambda_i))

Lets take the dot product again:


\vec{v}_i \cdot   \vec{v}_j = (\vec{v}_i )^t \vec{v}_j

but this is :


\vec{v}_i \cdot   \vec{v}_j =  (\vec{v} _i)^t A ((1)/(\lambda_i)) \vec{v}_j


\vec{v}_i \cdot   \vec{v}_j =  ((1)/(\lambda_i))  (\vec{v} _i)^t A \vec{v}_j


\vec{v}_i \cdot   \vec{v}_j =  ((1)/(\lambda_i))  (\vec{v} _i)^t ( A \vec{v}_j )

But, the parenthesis is equal to


A \vec{v} _j = \lambda_j \vec{v} _j

so


\vec{v}_i \cdot   \vec{v}_j =  ((1)/(\lambda_i))  (\vec{v} _i)^t \lambda_j \vec{v} _j


\vec{v}_i \cdot   \vec{v}_j =  ((\lambda_j )/(\lambda_i))  (\vec{v} _i)^t \vec{v}_j

Now, subtracting the dot product


\vec{v}_i \cdot   \vec{v}_j  - \vec{v}_i \cdot   \vec{v}_j  =  ((\lambda_j )/(\lambda_i))  (\vec{v} _i)^t \vec{v}_j - (\vec{v} _i)^t \vec{v}_j = 0


( (\lambda_j )/(\lambda_i) - 1 ) (\vec{v} _i)^t \vec{v}_j= 0

As the eigenvalues are distinct,
(\lambda_j )/(\lambda_i) can't be 1, so


( (\lambda_j )/(\lambda_i) - 1 ) \\e 0

this implies


(\vec{v} _i)^t \vec{v}_j= 0

so the eigenvectors are orthogonal.

User Tufelkinder
by
4.6k points