183k views
0 votes
Given values: 54, 65, 76, 43, 45, 76, 87 12, 23, 34, 67,65, 78, 45, 34. Given 95% confidence and sigma (population standard deviation) (12) Compute the confidence interval. Round to one decimal place.

(A) (47.5, 59.7)

(B) (12, 87)

(C) (48.5, 58.7)

(D) None of the above.

1 Answer

1 vote

Answer:

Option (D) None of the above.

Explanation:

We are given the following data:

54, 65, 76, 43, 45, 76, 87, 12, 23, 34, 67,65, 78, 45, 34

Formula:


\text{Standard Deviation} = \sqrt{\displaystyle\frac{\sum (x_i -\bar{x})^2}{n-1}}

where
x_i are data points,
\bar{x} is the mean and n is the number of observations.


Mean = \displaystyle\frac{\text{Sum of all observations}}{\text{Total number of observation}}


Mean =\displaystyle(804)/(15) = 53.6

Sum of squares of differences = 0.16 + 129.96 + 501.76 + 112.36 + 73.96 + 501.76 + 1115.56 + 1730.56 + 936.36 + 384.16 + 179.56 + 129.96 + 595.36 + 73.96 + 384.16 = 6849.6


S.D = \sqrt{(6849.6)/(15)} = 21.4

Confidence interval:


\mu \pm z_(critical)(\sigma)/(√(n))

Putting the values, we get,


z_(critical)\text{ at}~\alpha_(0.05) = 1.96


53.6 \pm 1.96((21.4)/(√(15)) ) = 53.6 \pm 10.83 = (42.8,64.4)

User Jeyamaran
by
5.0k points