Answer:
A) The set builder notation is: n∈Z, 1≤n≤7.
B) The set builder notation is:
![\ x=0,1,2,3,4\](https://img.qammunity.org/2020/formulas/mathematics/college/cypva4tjoidxpw2343wpf4zqkg3hf6f60f.png)
C) The set builder notation is:
![\ n\in z\](https://img.qammunity.org/2020/formulas/mathematics/college/v3wo700ejrln7n8y1juul8cd8i9nzw8msv.png)
D) The set builder notation can be:
![\ x=x^3\ and\ x\\eq 1\](https://img.qammunity.org/2020/formulas/mathematics/college/r4oapk0wlewq2lyj0k9lvfe7ki56dhbl50.png)
Explanation:
Consider the provided information,
We need to use set-builder notation to describe the following sets.
(a) {1,2,3,4,5,6,7}
Here, the number are integer starting from 1 to 7.
Thus, the set builder notation is: n∈Z, 1≤n≤7.
(b) {1, 10, 100, 1000, 10000}
The above set can be written as:
![\{1, 10, 100, 1000, 10000\}=\{10^0, 10^1, 10^2, 10^3, 10^4\}](https://img.qammunity.org/2020/formulas/mathematics/college/98h2zi5w5y6gn737typ2uhr7fm5kt01j41.png)
Thus, the set builder notation is:
![\ x=0,1,2,3,4\](https://img.qammunity.org/2020/formulas/mathematics/college/cypva4tjoidxpw2343wpf4zqkg3hf6f60f.png)
(c) {1, 1/2, 1/3, 1/4, 1/5, ...}
Here the numerator is 1 for each term but denominator is natural number.
Thus, the set builder notation is:
![\(1)/(n)](https://img.qammunity.org/2020/formulas/mathematics/college/v3wo700ejrln7n8y1juul8cd8i9nzw8msv.png)
(d) {0}
The set builder notation can be:
![\ x=x^3\ and\ x\\eq 1\](https://img.qammunity.org/2020/formulas/mathematics/college/r4oapk0wlewq2lyj0k9lvfe7ki56dhbl50.png)