Answer:
Maximum value of total revenue = 18
Explanation:
- Express this Demand Curve in terms of Q.
P = 24 - 8Q (it is the same equation)
P= 24-8(2)
P=24-16
P=8
P = 24 - 8Q
8= 24 - 8Q
8Q= 24-8
8Q=16
Q=16/8
Q=2
- Total revenue in terms of Q
Total revenue is P times Q, that is
P*Q=TR=(24-8Q)*Q
TR=24Q-8Q^2
![TR=24Q-8Q^(2) \\\\](https://img.qammunity.org/2020/formulas/mathematics/college/jawl5qgfz2kcvqae6m8fsx8g7nmdv11m0x.png)
It is the first derivative of TR
TR'(Q)= 24-16Q
- Find the values of P and Q that will maximize total revenue.
To find them first TR'(Q)=0, that is
0=24-16Q
16Q=24
Q=24/16
Q=3/2
Q=1.5
and we plug in 1.5 in P=24-8Q, which is,
P=24-8Q
P=24-8(1,5)
P=24-12
P=12
- Calculate this maximum value of total revenue
P=12 Q=1.5
P*Q=Total Revenue
12*1.5=Total Revenue
18=Total Revenue