133k views
2 votes
Given the following matrix, where a is constant, find the indicated matrix:

E= [ 2a 0 -a

0 1 2

-3 a 0 ]

Bonus) E^3

User Carlyle
by
7.6k points

1 Answer

4 votes

I see this problem as asking, "given the matrix
E, find
E^3".

We can do this directly by computing the matrix product
E^3=EEE.


E=\begin{bmatrix}2a&0&-a\\0&1&2\\-3&a&0\end{bmatrix}


\implies E^2=\begin{bmatrix}2a&0&-a\\0&1&2\\-3&a&0\end{bmatrix}\begin{bmatrix}2a&0&-a\\0&1&2\\-3&a&0\end{bmatrix}=\begin{bmatrix}4a^2+3a&-a^2&-2a^2\\-6&2a+1&2\\-6a&a&5a\end{bmatrix}


\implies E^3=\begin{bmatrix}4a^2+3a&-a^2&-2a^2\\-6&2a+1&2\\-6a&a&5a\end{bmatrix}\begin{bmatrix}2a&0&-a\\0&1&2\\-3&a&0\end{bmatrix}=\begin{bmatrix}8a^3+12a^2&-2a^3-a^2&-4a^3-5a^2\\-12a-6&4a+1&10a+2\\-12a^2-15a&5a^2+a&6a^2+2a\end{bmatrix}

User Fouronnes
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories