133k views
2 votes
Given the following matrix, where a is constant, find the indicated matrix:

E= [ 2a 0 -a

0 1 2

-3 a 0 ]

Bonus) E^3

User Carlyle
by
7.6k points

1 Answer

4 votes

I see this problem as asking, "given the matrix
E, find
E^3".

We can do this directly by computing the matrix product
E^3=EEE.


E=\begin{bmatrix}2a&0&-a\\0&1&2\\-3&a&0\end{bmatrix}


\implies E^2=\begin{bmatrix}2a&0&-a\\0&1&2\\-3&a&0\end{bmatrix}\begin{bmatrix}2a&0&-a\\0&1&2\\-3&a&0\end{bmatrix}=\begin{bmatrix}4a^2+3a&-a^2&-2a^2\\-6&2a+1&2\\-6a&a&5a\end{bmatrix}


\implies E^3=\begin{bmatrix}4a^2+3a&-a^2&-2a^2\\-6&2a+1&2\\-6a&a&5a\end{bmatrix}\begin{bmatrix}2a&0&-a\\0&1&2\\-3&a&0\end{bmatrix}=\begin{bmatrix}8a^3+12a^2&-2a^3-a^2&-4a^3-5a^2\\-12a-6&4a+1&10a+2\\-12a^2-15a&5a^2+a&6a^2+2a\end{bmatrix}

User Fouronnes
by
8.5k points