Answer:
1. Slope at a=2 is 2.
2. Slope at a=0 is 2.
Explanation:
We need to find the slope of y = f(x) at x = a.
1.
The given function is
![f(x)=x^2-2x](https://img.qammunity.org/2020/formulas/mathematics/college/8rfs2xb95x75tybgquvirszzma2v9u6835.png)
It can be written as
![y=x^2-2x](https://img.qammunity.org/2020/formulas/mathematics/college/t5uy6z198wlrxyqcp2ymtfl4gidb9ub4fu.png)
Differentiate with respect to x.
![y'=2x-2](https://img.qammunity.org/2020/formulas/mathematics/college/5uzxc34bhdt8txbiza78b8lng1e6r6m5tb.png)
Substitute x=2 to find the slope of y = f(x) at a=2.
![y'=2(2)-2](https://img.qammunity.org/2020/formulas/mathematics/college/7cnb71odexhs0zuxxctvmjjogc8kkaflth.png)
![y'=4-2](https://img.qammunity.org/2020/formulas/mathematics/college/u4ycm9090svj8anrho34w68yccav0ebedu.png)
![y'=2](https://img.qammunity.org/2020/formulas/mathematics/college/f0xi1omlbjfme99crs28kywangazv639rc.png)
Therefore the slope of function at a=2 is 2.
2.
The given function is
![f(x)=\sin 2x](https://img.qammunity.org/2020/formulas/mathematics/college/gte5ymoflpthdytumojpizbs856k07lt0p.png)
It can be written as
![y=\sin 2x](https://img.qammunity.org/2020/formulas/mathematics/high-school/5owuwlscasc7oo8nwnpffeq1uhzger8ke1.png)
Differentiate with respect to x.
![y'=2\cos 2x](https://img.qammunity.org/2020/formulas/mathematics/college/xx69klahhkfqz0rt6ngiuomimwk5snfj8v.png)
Substitute x=0 to find the slope of y = f(x) at a=0.
![y'=2\cos 2(0)](https://img.qammunity.org/2020/formulas/mathematics/college/fr2jk3d1w654cu9ke5f850puilmxvzmfyb.png)
![y'=2(1)](https://img.qammunity.org/2020/formulas/mathematics/college/sey5j0oxjsbxf4nynhy62titxamtdut2fh.png)
![y'=2](https://img.qammunity.org/2020/formulas/mathematics/college/f0xi1omlbjfme99crs28kywangazv639rc.png)
Therefore the slope of function at a=0 is 2.