233k views
4 votes
Given that y = sin(x+y),find the derivative when (x,y)=(π,0)​

User Madasionka
by
5.9k points

1 Answer

3 votes

Answer:

Shown in the explanation

Explanation:

Recall that an implicit function is a relation given by the form:


{\displaystyle R(x_(1),\ldots, x_(n))=0}

Where
R is a function of two or more variables. In this case, that function is:


y = sin(x+y)

and is implicit because we can define it as:


y-sin(x+y)=0 having two variables.

So, let's take the derivative:


(d)/(dx)\left(y\right)=(d)/(dx)\left(\sin \left(x+y\right)\right) \\ \\

Applying chain rule:


(d)/(dx)\left(\sin \left(x+y\right)\right)=\cos \left(x+y\right)\left(1+(d)/(dx)\left(y\right)\right)

But:


(d)/(dx)\left(y\right)=y'

Therefore:


y'=\cos \left(x+y\right)\left(1+y'\right)

Isolating
y':


(d)/(dx)\left(y\right)=y'=(\cos \left(x+y\right))/(1-\cos \left(x+y\right))

When
(x,y)=(\pi,0):


(d)/(dx)\left(y\right)|_((\pi,0))=(\cos \left(\pi+0\right))/(1-\cos \left(\pi+0\right)) \\ \\ (d)/(dx)\left(y\right)|_((\pi,0))=(\cos \left(\pi\right))/(1-\cos \left(\pi\right)) \\ \\ (d)/(dx)\left(y\right)|_((\pi,0))=(-1)/(1-(-1)) \\ \\ \boxed(d)/(dx)\left(y\right)

User Danny Elliott
by
6.1k points