Answer:
The probability is 0.68
Explanation:
We are going to use conditional probability to solve this problem.
We define the following events :
A : '' Alex replaced the starter''
B : ''Alex replaced the battery''
M : ''The engine works''
NM : ''The engine doesn't work''
Given two events A and B, we define the conditional probability:
![P(A/B) =(P(A,B))/(P(B)) \\P(B)> 0](https://img.qammunity.org/2020/formulas/mathematics/college/hkpryhfjl8j4u2jm8wfvnbmnzbviu6vv6c.png)
![P(B/A)=(P(B,A))/(P(A)) \\P(A)> 0](https://img.qammunity.org/2020/formulas/mathematics/college/qvy97scgfvvhwm9lj7hpzca36a9ivru1nt.png)
Where P(A,B) = P(B,A) = P(A∩B) = P(B∩A)
In our problem :
![P(M/B)=0.7\\P(M/A)=0.2\\P(B)=0.85\\](https://img.qammunity.org/2020/formulas/mathematics/college/pmr8t15hkfn9v7anywnydc14st7akpec99.png)
Alex replaced the battery or either the starter ⇒
![P(A)=1-P(B)=1-0.85=0.15\\P(A)=0.15](https://img.qammunity.org/2020/formulas/mathematics/college/g2rtgt2duokr8uarcz5qkjmm2povlcfqyk.png)
We need to find
![P(B/NM)=(P(B,NM))/(P(NM))](https://img.qammunity.org/2020/formulas/mathematics/college/sjdlyhgl1nilm97xal6vf4mlqbhyavax9r.png)
We write :
![P(M/B)=(P(M,B))/(P(B)) \\0.7=(P(M,B))/(0.85)\\ P(M,B)=0.595](https://img.qammunity.org/2020/formulas/mathematics/college/y5hfb57jzs0dn7b651dzy3l4xhrfxb7thg.png)
![P(M/A)=(P(M,A))/(P(A)) \\0.2=(P(M,A))/(0.15) \\P(M,A)=0.03](https://img.qammunity.org/2020/formulas/mathematics/college/ah6tah4ne0o5ff2o5k1ndoigwcqthxafkh.png)
P(M) = [P(M∩B) ∪ P(M∩A)]
P(M) = P(M∩B) + P(M∩A) - P[(M∩B)∩(M∩A)]
But P[(M∩B)∩(M∩A)] = 0 because he replaced the battery or either the starter
P(M) = P(M∩B) + P(M∩A)
P(M)=0.595+0.03
P(M)=0.625
P(NM)= 1-P(M)=1-0.625=0.375
P(NM)= 0.375
P(NM/B) = 1-P(M/B)=1-0.7=0.3
P(NM/B) = 0.3
![P(NM/B)=0.3=(P(NM,B))/(P(B))=(P(NM,B))/(0.85) \\P(NM,B)=0.255](https://img.qammunity.org/2020/formulas/mathematics/college/mqusykb4k4man8wrkefsdlpjwgs6xf2w0b.png)
![P(B/NM)=(P(NM,B))/(P(NM)) =(0.255)/(0.375) =0.68](https://img.qammunity.org/2020/formulas/mathematics/college/l6b3a4ycogrne2dqfkct9530ia2oxpfjkk.png)