Answer:
domain [ g(t) ] = (-∞,∞)
g'(t)=9
domain [ g'(t) ] =(-∞,∞)
Explanation:
We start by finding the domain of the function g(t)
The domain of a function is the set of all inputs over which the function has defined outputs.
In g(t) = 9t ; g(t) is define for all real numbers
domain [ g(t) ] = (-∞,∞)
For the derivative of the function we use the definition of derivative :
Given f(x)→
![f'(x) = \lim_(h \to \00) (f(x+h)-f(x))/(h)](https://img.qammunity.org/2020/formulas/mathematics/college/ygpdaejw7av9sbg6wgkg6hgwyi50dt4c02.png)
In our exercise :
![g'(t)= \lim_(h \to \00) (g(t+h)-g(t))/(h)](https://img.qammunity.org/2020/formulas/mathematics/college/basy9jcpwhc8pdrwvxnx3a9wfrql4gpv46.png)
![\lim_(h \to \00) (9(t+h)-9t)/(h) =\\ \lim_(h \to \00) (9t+9h-9t)/(h) =\\\lim_(h \to \00) (9h)/(h)\\\lim_(h \to \00) 9=9](https://img.qammunity.org/2020/formulas/mathematics/college/t04l6u7eqvx58zix6m5amsklsmeegbxrca.png)
![g'(t)=9](https://img.qammunity.org/2020/formulas/mathematics/college/e19lrt14vesx69a65pwi8b43noxtqc6nax.png)
domain [ g'(t) ] =(-∞,∞)