Answer:
![(ad+bc)/(bd)](https://img.qammunity.org/2020/formulas/mathematics/high-school/q4l2rtvh599pusnbk6tbab72c54eh30301.png)
Explanation:
Let
and
be two rational numbers, where b and d are not zero and a, b, c and d are integers.
1. Given:
![(a)/(b)+(c)/(d)](https://img.qammunity.org/2020/formulas/mathematics/high-school/co3lknq0kwh7d5en1e4726vr52tbees2gd.png)
2. Multiply to get a common denominator :
![(a)/(b)+(c)/(d)=(ad)/(bd)+(cb)/(db)](https://img.qammunity.org/2020/formulas/mathematics/high-school/mqelmj3a19ruilwijy6q42dyda5ebeyt10.png)
3. Simplify:
![(a)/(b)+(c)/(d)=(ad)/(bd)+(cb)/(db)=(ad+bc)/(bd)](https://img.qammunity.org/2020/formulas/mathematics/high-school/90fooiz2alyb3iksg3ogorrzlrzn3azurf.png)
4. Since
then
![bd\\eq 0.](https://img.qammunity.org/2020/formulas/mathematics/high-school/xafvatwpbsgj38r1c0aoz4h7hgs11lb60z.png)
If
are integers, then
are integers too. So the fraction
![(ad+bc)/(bd)](https://img.qammunity.org/2020/formulas/mathematics/high-school/q4l2rtvh599pusnbk6tbab72c54eh30301.png)
is a rational number