Answer:
Inverse of
is
![\bold{y=5 \pm √(x+25)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9g8xkx9yh3g45aput4ss2te0ga8h3uq2o3.png)
Solution:
Given that
![y=x^(2)-10 x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jkrn78fhhmlothzvondjpjcxel0a2fem7g.png)
Adding
on both sides
![y+5^(2)=x^(2)-10 x+5^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/c2qrrsk5wp77va5cei8huvpm4q0ym6z8r9.png)
Rewrite 10x as 2(5)x,
![y+5^(2)=x^(2)-2(5) x+5^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yp5p31mjj87wdhrxqyr8flumx7i5kt1rvl.png)
By using
, we get
![y+5^(2)=(x-5)^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/csbmgymenckfzx0joznryarjri46jhegt4.png)
(Completing the square)
Now swap x and y, we get
![x+25=(y-5)^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/boczzl8vgi0dwflo0prz0fu7o8cqxofe9b.png)
Rewrite the above equation,
![(y-5)^(2)=x+25](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8bagmm9lvs5cd25qrsmhmwgpj81yufksll.png)
Taking square root of both sides,
![y-5=\pm √(x+25)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/z3twhpnv1syt3xzveen3jtr8ct79a5syge.png)
Adding 5 on both sides,
![y=5 \pm √(x+25)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/sxz0iogk325va2ejsfl97717v81zrdgsth.png)
Hence inverse of