Answer:
The inequality that you have is
. You can use mathematical induction as follows:
Explanation:
For
we have:
![5^(5)=3125](https://img.qammunity.org/2020/formulas/mathematics/college/4i7533lobgp5cy8uas4zopjapf3lyvfyi8.png)
![2^((2(5)+1))+100=2148](https://img.qammunity.org/2020/formulas/mathematics/college/qq060t6vhqc6psel5yq21dstt1dux4l9k1.png)
Hence, we have that
![5^(5)>2^((2(5)+1))+100.](https://img.qammunity.org/2020/formulas/mathematics/college/4y6pa82c5vb0sj9enak5ugl8onthmvlpns.png)
Now suppose that the inequality holds for
and let's proof that the same holds for
. In fact,
![5^(k+1)=5^(k)\cdot 5>(2^(2k+1)+100)\cdot 5.](https://img.qammunity.org/2020/formulas/mathematics/college/i7zjzbzrh2tmau7pvrw52g6f2fgbbva9cn.png)
Where the last inequality holds by the induction hypothesis.Then,
![5^(k+1)>(2^(2k+1)+100)\cdot (4+1)](https://img.qammunity.org/2020/formulas/mathematics/college/iwxtioo5n7urhkg7lhgo9cg93v0lmn1vh9.png)
![5^(k+1)>2^(2k+1)\cdot 4+100\cdot 4+2^(2k+1)+100](https://img.qammunity.org/2020/formulas/mathematics/college/3twbqtwmy4hovryxgmg7cytxopm34l0hqe.png)
![5^(k+1)>2^(2k+3)+100\cdot 4](https://img.qammunity.org/2020/formulas/mathematics/college/3x03u0wudvn11l5g8oy2drd1qnlm3g0dfb.png)
![5^(k+1)>2^(2(k+1)+1)+100](https://img.qammunity.org/2020/formulas/mathematics/college/sd3ti5d3pelgo4e9kfpzsjgkuout79uxrl.png)
Then, the inequality is True whenever
.