Answer: $50,846.3701
Step-by-step explanation:
Need to save $4 million to live comfortably,
Interest rate, r = 3%
N = 40 years
![Present\ value=(FV_(N) )/((1+i)^(N))](https://img.qammunity.org/2020/formulas/business/college/mvtm27xecvvuserwdice42usrnz1efj12q.png)
![Present\ value=(4,000,000 )/((1+0.03)^(40))](https://img.qammunity.org/2020/formulas/business/college/b4e92hyryf55sgmmojggulu5f8z8tjujy8.png)
![Present\ value=(4,000,000 )/(3.262)](https://img.qammunity.org/2020/formulas/business/college/zhu7boay3q85qla9nhy0ztny7h3dd5u6jm.png)
= 1,226,241.57
![Present\ value\ of\ annuity= C*(1)/(i)*(1-(1)/((1+i)^(N))) + C](https://img.qammunity.org/2020/formulas/business/college/pqtw5ukb5vj2t27eebvh2slo1hgaobz39i.png)
![1,226,241.57= C*(1)/(0.03)*(1-(1)/((1.03)^(40)))+C](https://img.qammunity.org/2020/formulas/business/college/w3k9e2c0gccr14le88z1na3elmfeop8s69.png)
![1,226,241.57= C*(1)/(0.03)*(1-(1)/((1.03)^(40)))+C](https://img.qammunity.org/2020/formulas/business/college/w3k9e2c0gccr14le88z1na3elmfeop8s69.png)
![1,226,241.57=C[(1)/(0.03)*(1-0.3065)+1]](https://img.qammunity.org/2020/formulas/business/college/8elg7uzjtq6vq7yqjirbpudgovodipnuw4.png)
![1,226,241.57=24.1166* C](https://img.qammunity.org/2020/formulas/business/college/rupcjj9odhskhpduswghx5ajsf54cf94l3.png)
![C=(1,226,241.57)/(24.1166)](https://img.qammunity.org/2020/formulas/business/college/rfzcui6k3coyt3ojtr95psihsjqw5bf6py.png)
= $50,846.3701
Hence, $50,846.3701 will be the annual payment to have $4 million in the account on 65th birthday.