Answer:
100X
Step-by-step explanation:
r = Distance between the Sun and Earth
M = Mass of the Sun = 1.989 × 10³⁰ kg
m = Mass of the Earth = 5.972 × 10²⁴ kg
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
When r = 1 Au = 1.496×10¹¹ m
![F_1=G(Mm)/(r^2)\\\Rightarrow F=G(Mm)/((1.496* 10^(11))^2)](https://img.qammunity.org/2020/formulas/physics/high-school/nvfj81vwnl26rtwrtg56m2rfv64k41mrgv.png)
When r = 10 Au = 1.496×10¹² m
![F_2=G(Mm)/(r^2)\\\Rightarrow F=G(Mm)/((1.496* 10^(12))^2)](https://img.qammunity.org/2020/formulas/physics/high-school/zl7cs1ljj8neb9x3gvzsrduq9a220o0j8g.png)
Dividing the forces we get
![(F_1)/(F_2)=(G(Mm)/((1.496* 10^(11))^2))/(G(Mm)/((1.496* 10^(12))^2))\\\Rightarrow (F_1)/(F_2)=((1)/(10^(22)))/((1)/(10^(24)))\\\Rightarrow (F_1)/(F_2)=100\\\Rightarrow F_1=100F_2](https://img.qammunity.org/2020/formulas/physics/high-school/o021fou02y4hd6ctqr9n89n9vaig08qwo9.png)
Hence, the force when the Earth is 1 Au from the sun is 100 times greater than if the Earth was 10 Au from the Sun.