Answer:
![P(disease/positivetest) = 0.36116](https://img.qammunity.org/2020/formulas/mathematics/high-school/5m0uhrw0sxk3gphx8b0uegul8l223ob8e2.png)
Explanation:
This is a conditional probability exercise.
Let's name the events :
I : ''A person is infected''
NI : ''A person is not infected''
PT : ''The test is positive''
NT : ''The test is negative''
The conditional probability equation is :
Given two events A and B :
P(A/B) = P(A ∩ B) / P(B)
![P(B) >0](https://img.qammunity.org/2020/formulas/mathematics/high-school/s4th29r4hvc6oyo06rwma7xv6lg5roj124.png)
P(A/B) is the probability of the event A given that the event B happened
P(A ∩ B) is the probability of the event (A ∩ B)
(A ∩ B) is the event where A and B happened at the same time
In the exercise :
![P(I)=0.025](https://img.qammunity.org/2020/formulas/mathematics/high-school/jy61apfo9au68qb2gwjcovq0k7yyo6nef3.png)
![P(NI)= 1-P(I)=1-0.025=0.975\\P(NI)=0.975](https://img.qammunity.org/2020/formulas/mathematics/high-school/iddx6sf1kx3d5ke8w4dp1b5mbhqp3qt8z1.png)
![P(PT/I)=0.904\\P(PT/NI)=0.041](https://img.qammunity.org/2020/formulas/mathematics/high-school/f9r4fcm7goneoy0cdohux4d3otlwub2k0b.png)
We are looking for P(I/PT) :
P(I/PT)=P(I∩ PT)/ P(PT)
![P(PT/I)=0.904](https://img.qammunity.org/2020/formulas/mathematics/high-school/p9z8p6ltwp326vke1e4dnwfbexbsoi06rc.png)
P(PT/I)=P(PT∩ I)/P(I)
0.904=P(PT∩ I)/0.025
P(PT∩ I)=0.904 x 0.025
P(PT∩ I) = 0.0226
P(PT/NI)=0.041
P(PT/NI)=P(PT∩ NI)/P(NI)
0.041=P(PT∩ NI)/0.975
P(PT∩ NI) = 0.041 x 0.975
P(PT∩ NI) = 0.039975
P(PT) = P(PT∩ I)+P(PT∩ NI)
P(PT)= 0.0226 + 0.039975
P(PT) = 0.062575
P(I/PT) = P(PT∩I)/P(PT)
![P(I/PT)=(0.0226)/(0.062575) \\P(I/PT)=0.36116](https://img.qammunity.org/2020/formulas/mathematics/high-school/zmqiktmrxxlc8prbw9slssdxrlh8711clm.png)