Answer:
The net force acting on the tennis ball while it is in contact with the racquet is 50.73 N
Step-by-step explanation:
The impulse-momentum theorem said that the net impulse is equal to the change of the momentum, this is:
![\overrightarrow{I}=\varDelta\overrightarrow{P}\,\,(1)](https://img.qammunity.org/2020/formulas/physics/high-school/n4nie2n006p8xadewy75w9g6zuqkakhp7v.png)
but the net impulse is too the net force times the change in time:
![\overrightarrow{I}=\overrightarrow{F}\varDelta t\,\,(2)](https://img.qammunity.org/2020/formulas/physics/high-school/aoilb6445biaav8asv3deb7c30ih7ne9fv.png)
so using (2) on (1) we have:
![\overrightarrow{F}\varDelta t=\varDelta\overrightarrow{P}\,\,(3)](https://img.qammunity.org/2020/formulas/physics/high-school/n9kixdjo8pdymsdabjo0rod7fj5zrk7yqx.png)
Decomposing that on x and y components:
![F_(x)\varDelta t=\varDelta P_(x)=P_(fx)-P_(ox)\,\,(3)](https://img.qammunity.org/2020/formulas/physics/high-school/rwi2eng215l412xo6a8vq9p3ws091xy8mx.png)
![F_(y)\varDelta t=\varDelta P_(y)=P_(fy)-P_(oy)\,\,(4)](https://img.qammunity.org/2020/formulas/physics/high-school/onz0hwdg6p95lfrr8da5ojqjggz7x0y8b2.png)
(See figure below) with Pfx = m*vfx= m*vf*cos(15°)=(0.058kg)(40m/s)cos(15°),
Pox = -m*vox= m*vo*cos(15°)=-(0.058kg)(30m/s)cos(15°), the same analysis to Pfy and Poy gives
Pfy=(0.058kg)(40m/s)sin(15°), Poy=-(0.058kg)(30m/s)sin(15°), using those values on (3) and (4) and solving for Fy and Fx:
![F_(x)=\frac{(0.058)(40)cos(15\text{\textdegree})-(-(0.058)(30)cos(15\text{\textdegree}))}{0.08}\simeq49N\,\,(5)](https://img.qammunity.org/2020/formulas/physics/high-school/mce6agx4yq02q1e1zdnjichdibjxtbeijk.png)
![F_(y)=\frac{(0.058)(40)sin(15\text{\textdegree})-(-(0.058)(30)sin(15\text{\textdegree}))}{0.08}\simeq13.13N\,\,(6)](https://img.qammunity.org/2020/formulas/physics/high-school/3n083jnc9ffgk1u7ovxq4xh6zpgy2py0bj.png)
So the net force acting on the tennis ball while it is in contact with the racquet is:
![F=\sqrt{F_(x)^(2)+F_(y)^(2)}\simeq50.73N](https://img.qammunity.org/2020/formulas/physics/high-school/lbd97r75ihkyrkndaul3avtobqap2knz7t.png)