Answer:
(a) The recurrence relation for the salary is
![S_(n+1)=1.05*S_n+1000\\\\S_0=50000](https://img.qammunity.org/2020/formulas/mathematics/high-school/by5beh22kh0mxgkb4n5it6s5ysahom9ljp.png)
(b) The salary 25 years after 2017 will be $217044.85.
(c)
![S_n=1.05^nS_0+1000*\sum_(0)^(n-1)1.05^n](https://img.qammunity.org/2020/formulas/mathematics/high-school/4v4rl73ihlczukcciv3k03i6fl5yj4yrhr.png)
Explanation:
We can define the next year salary
as
![S_(n+1)=S_n+1000+0.05*S_n=1.05*S_n+1000](https://img.qammunity.org/2020/formulas/mathematics/high-school/ni71v5mvvbae3rtf8u8lhismrtv4jn56vq.png)
wit S0=$50000
If we extend this to 2 years from 2017 (n+2), we have
![S_(n+2)=1.05*S_(n+1)+1000=1.05*(1.05*S_n+1000)+1000\\S_(n+2) =1.05^2*S_n+1.05*1000+1000\\S_(n+2)=1.05^2*S_n+1000*(1.05^1+1)](https://img.qammunity.org/2020/formulas/mathematics/high-school/maka2s1lq8e1ohm2rozyzfuoajz1xqjofk.png)
Extending to 3 years (n+3)
![S_(n+3)=1.05*S_(n+2)+1000=1.05(1.05^2*S_n+1000*(1.05^1+1))+1000\\\\S_(n+3)=1.05^3S_n+1.05*1000*(1.05^1+1)+1000\\\\S_(n+3)=1.05^3*S_n+1000*(1.05^2+1.05^1+1)](https://img.qammunity.org/2020/formulas/mathematics/high-school/ich5bvq8xf5bj2n5o5uahhno7at7gxu2sk.png)
Extending to 4 years (n+4)
![S_(n+4)=1.05*S_(n+3)+1000=1.05*(1.05^3*S_n+1000*(1.05^2+1.05^1+1))+1000\\\\S_(n+4)=1.05^4S_n+1.05*1000*(1.05^2+1.05^1+1))+1000\\\\S_(n+4)=1.05^4S_n+1000*(1.05^3+1.05^2+1.05^1+1.05^0)](https://img.qammunity.org/2020/formulas/mathematics/high-school/h05w06tjanu3gpo95kwd1l2txw3xahyqf3.png)
We can now express a general equation for S_n (salary at n years from 2017)
![S_n=1.05^nS_0+1000*\sum_(0)^(n-1)1.05^n](https://img.qammunity.org/2020/formulas/mathematics/high-school/4v4rl73ihlczukcciv3k03i6fl5yj4yrhr.png)
The salary at 25 years from 2017 (n=25) will be
![S_(25)=1.05^(25)S_0+1000*\sum_(0)^(24)1.05^i\\\\S_(25)=3.386*50000+1000*47.72=217044.85](https://img.qammunity.org/2020/formulas/mathematics/high-school/yx7kg9wduogd19hl67ei8rdtfaw16dbgc0.png)