213k views
2 votes
Could you make proof of "a > b" please ?

Could you make proof of "a > b" please ?-example-1

1 Answer

1 vote

Answer:

See explanation

Explanation:

Consider the first triangle:

1. From the right triangle with acute angle
\theta_1:


(c)/(h)=\tan\theta_1\Rightarrow c=h\tan\theta_1

2. From the right triangle with acute angle
\alpha:


(c+a)/(h)=\tan\alpha\Rightarrow c+a=h\tan\alpha

Thus,


h\tan\theta_1+a=h\tan\alpha\Rightarrow a=h\tan\alpha-h\tan\theta_1

Consider the second triangle:

1. From the right triangle with acute angle
\theta_2:


(d)/(h)=\tan\theta_2\Rightarrow d=h\tan\theta_2

2. From the right triangle with acute angle
\beta:


(d+b)/(h)=\tan\beta\Rightarrow b+d=h\tan\beta

Thus,


h\tan\theta_2+b=h\tan\beta\Rightarrow b=h\tan\beta-h\tan\theta_2

Now, since
\alpha>\beta, we have
\tan\alpha>\tan\beta and
\sin\alpha>\sin\beta.

If


(\sin\alpha)/(\sin\theta_1)=(\sin\beta)/(\sin\theta_2)

and


\sin\alpha>\sin\beta,

then


\sin\theta_1>\sin\theta_2.

This means
\theta_1>\theta_2 and
\tan\theta_1>\tan \theta_2.

Hence,


h\tan\theta_1>h\tan \theta_2\\ \\-h\tan\theta_1<-h\tan \theta_2

Now,


h\tan\beta<h\tan\alpha

and


-h\tan\theta_1<-h\tan \theta_2

so


h\tan\beta-h\tan\theta_1<h\tan\alpha-h\tan \theta_2\\\\b<a

Note that this solution is true only for acute angles
\alpha,\ \beta,\ \theta_1,\ \theta_2

User Richard Banks
by
8.2k points