Answer:
The inverse of the matrix A is
![A^(-1)=\left[\begin{array}{ccc}3/4&-1/4&-1/4\\-1/4&3/4&-1/4\\-1/4&-1/4&3/4\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/zqap4spsjy4rghv68oh5bhxklsf9s9zllm.png)
Explanation:
We have the following matrix
![A=\left[\begin{array}{ccc}2&1&1\\1&2&1\\1&1&2\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/p1mx8wjwrdsmfpek35vsu34g8zr2tyupc9.png)
Step 1 - Adjoin the identity matrix to the given matrix
![\left[\begin{array}ccc2&1&1&1&0&0\\1&2&1&0&1&0\\1&1&2&0&0&1\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/4dn3i3ed6gkm63mdefhrgmythz9ze7pxwq.png)
Step 2 - Transform the matrix to the reduced row echelon form
- Row Operation 1: multiply the 1st row by 1/2
![\left[\begin{array}ccc1&1/2&1/2&1/2&0&0\\1&2&1&0&1&0\\1&1&2&0&0&1\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/h5ytxf7s2gmwfynwtcex6mnlauiv97mxq4.png)
- Row Operation 2: add -1 times the 1st row to the 2nd row
![\left[\begin{array}ccc1&1/2&1/2&1/2&0&0\\0&3/2&1/2&-1/2&1&0\\1&1&2&0&0&1\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/diq48erhjfkdl2foo2i8u87et6ag5938an.png)
- Row Operation 3: add -1 times the 1st row to the 3rd row
![\left[\begin{array}ccc1&1/2&1/2&1/2&0&0\\0&3/2&1/2&-1/2&1&0\\0&1/2&3/2&-1/2&0&1\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/hycron3l4ni3kt5q0d9390k12pl9sv8qei.png)
- Row Operation 4: multiply the 2nd row by 2/3
![\left[\begin{array}ccc1&1/2&1/2&1/2&0&0\\0&1&1/3&-1/3&2/3&0\\0&1/2&3/2&-1/2&0&1\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/j91mzxw7wf44htytx5xnhzmdeutrqgx8g2.png)
- Row Operation 5: add -1/2 times the 2nd row to the 3rd row
![\left[\begin{array}ccc1&1/2&1/2&1/2&0&0\\0&1&1/3&-1/3&2/3&0\\0&0&4/3&-1/3&-1/3&1\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/1tihsukzlyk9k0nawju72a9btodhzgg670.png)
- Row Operation 6: multiply the 3rd row by 3/4
![\left[\begin{array}ccc1&1/2&1/2&1/2&0&0\\0&1&1/3&-1/3&2/3&0\\0&0&1&-1/4&-1/4&3/4\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/exgzkw649yfb29xndb6r18yprlvnsf2rxh.png)
- Row Operation 7: add -1/3 times the 3rd row to the 2nd row
![\left[\begin{array}ccc1&1/2&1/2&1/2&0&0\\0&1&0&-1/4&3/4&-1/4\\0&0&1&-1/4&-1/4&3/4\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/he9nmg04blcfucdoqlze62hoa2ejctw1db.png)
- Row Operation 8: add -1/2 times the 3rd row to the 1st row
![\left[\begin{array}ccc1&1/2&0&5/8&1/8&-3/8\\0&1&0&-1/4&3/4&-1/4\\0&0&1&-1/4&-1/4&3/4\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/41g3krcmp9ron5iyk6w65nby1zyklwfg58.png)
- Row Operation 9: add -1/2 times the 2nd row to the 1st row
![\left[\begin{array}ccc1&0&0&3/4&-1/4&-1/4\\0&1&0&-1/4&3/4&-1/4\\0&0&1&-1/4&-1/4&3/4\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/o0z91wytuhh4zkj1cpbkfm44vxt4yycm3j.png)
As can be seen, we have obtained the identity matrix to the left. So, we are done.
The inverse of the matrix A is
![A^(-1)=\left[\begin{array}{ccc}3/4&-1/4&-1/4\\-1/4&3/4&-1/4\\-1/4&-1/4&3/4\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/zqap4spsjy4rghv68oh5bhxklsf9s9zllm.png)