106k views
3 votes
Solve the congruence x^329 = 452 (mod 1147). [Hint. 1147 is not prime.]

User Abelenky
by
8.1k points

1 Answer

4 votes

Answer:

The answer is
x \equiv 763 \:(mod \: 1147)

Explanation:

The following steps will give a solution to the congruence


x^(329) \equiv 452 \:(mod \:1147)

1. Compute Euler's Phi function
\phi(1147).

We have
1147=31\cdot 37 by prime factorization, so that
\phi(1147)=\phi(31)\cdot \phi(37)=30\cdot 36= 1080

because
\phi(p) =p-1 where p is a prime number.

2. Find positive integers u and v that satisfy
329\cdot u-\phi(1147)\cdot v=1.

We know a solution exists, since
gcd(329,1080)=1, using the Euclidean algorithm allows us to find the solution
1 = -151\cdot 329 + 46\cdot 1080

In order to get positive values for u and v, we modify this solution:


u=-151+1080=929 and
v=-46+329=283

The equation


329 \cdot 929-1080\cdot 283=1

provides the key to solving the original problem.

3. Compute
b^u \:(mod \:m) by successive squaring. The value obtained gives the solution x.

We have
452^(929)\:(mod \: 1147), so
x \equiv 452^(929)\:(mod \: 1147)

To use this method start by looking at the exponent 929 and represent it as a sum of powers of 2 this is called the binary expansion of 929. To do this, find the largest power of 2 less than your exponent in this case it’s
2^9=512. Subtract 512 from 929 getting 417. And continue in this manner to get:


929=2^9+2^8+2^7+2^5+2^0

Now


452^(929)\:(mod \: 1147)=452^(2^9+2^8+2^7+2^5+2^0)\:(mod \: 1147)

So all you have to do is to calculate the numbers


452^(2^9) \:(mod \:1147),452^(2^8) \:(mod \:1147),452^(2^7) \:(mod \:1147),452^(2^5) \:(mod \:1147), 452^(2^0) \:(mod \:1147)

and multiply them together, then take the product
(mod \: 1147)


452^(2^9) \:(mod \:1147)=417\\452^(2^8) \:(mod \:1147)=359\\452^(2^7) \:(mod \:1147)=565\\452^(2^5) \:(mod \:1147)=417\\452^(2^0) \:(mod \:1147)=452


x \equiv 452^(929)\:(mod \: 1147)\\x \equiv 417 \cdot 359\cdot 565 \cdot 417\cdot 452 \:(mod \: 1147)\\x \equiv 121\cdot 376 \:(mod \: 1147)\\x \equiv 763 \:(mod \: 1147)

User Joel Rosdahl
by
9.1k points