Answer:
![\mathcal{L}^(-1)\{(s+1)/(s(s^(2) + s +1))\}=1-e^(-t/2)cos((√(3) )/(2)t )+(e^(-t/2))/(√(3) )sin((√(3) )/(2)t)](https://img.qammunity.org/2020/formulas/mathematics/college/b7wwpi1p6l3wwrbe5h2ox376phn5dsh6v8.png)
Explanation:
let's start by separating the fraction into two new smaller fractions
.
First, s(s^2+s+1) must be factorized the most, and it is already. Every factor will become the denominator of a new fraction.
![(s+1)/(s(s^(2) + s +1))=(A)/(s)+(Bs+C)/(s^(2)+s+1)](https://img.qammunity.org/2020/formulas/mathematics/college/s0pz4shk9jjj5gjce879zgo0l0onr7e2ri.png)
Where A, B and C are unknown constants. The numerator of s is a constant A, because s is linear, the numerator of s^2+s+1 is a linear expression Bs+C because s^2+s+1 is a quadratic expression.
Multiply both sides by the complete denominator:
![[{s(s^(2) + s +1)](s+1)/(s(s^(2) + s +1))=[(A)/(s)+(Bs+C)/(s^(2)+s+1)][{s(s^(2) + s +1)]](https://img.qammunity.org/2020/formulas/mathematics/college/psemx7r4ui8eeoe0dw5tterenbddiaef90.png)
Simplify, reorganize and compare every coefficient both sides:
![s+1=A(s^2 + s +1)+(Bs+C)(s)\\\\s+1=As^(2)+As+A+Bs^(2)+Cs\\\\0s^(2)+1s^(1)+1s^(0)=(A+B)s^(2)+(A+C)s^(1)+As^(0)\\\\0=A+B\\1=A+C\\1=A](https://img.qammunity.org/2020/formulas/mathematics/college/1i6kpmc0hwbhcgy79ol5o4irnactay5qsi.png)
Solving the system, we find A=1, B=-1, C=0. Now:
![(s+1)/(s(s^(2) + s +1))=(1)/(s)+(-1s+0)/(s^(2)+s+1)=(1)/(s)-(s)/(s^(2)+s+1)](https://img.qammunity.org/2020/formulas/mathematics/college/xjmpep7vkxlhr2t9nedidg8trp23oebk8n.png)
Then, we can solve the inverse Laplace transform with simplified expressions:
![\mathcal{L}^(-1)\{(s+1)/(s(s^(2) + s +1))\}=\mathcal{L}^(-1)\{(1)/(s)-(s)/(s^(2)+s+1)\}=\mathcal{L}^(-1)\{(1)/(s)\}-\mathcal{L}^(-1)\{(s)/(s^(2)+s+1)\}](https://img.qammunity.org/2020/formulas/mathematics/college/jjcato2fk41h6lptgd0av796ctjiyd364w.png)
The first inverse Laplace transform has the formula:
![\mathcal{L}^(-1)\{(A)/(s)\}=A\\ \\\mathcal{L}^(-1)\{(1)/(s)\}=1\\](https://img.qammunity.org/2020/formulas/mathematics/college/ev4wblm5af7nnr1z2mtyvmsbs7vioyb5ns.png)
For:
![\mathcal{L}^(-1)\{-(s)/(s^(2)+s+1)\}](https://img.qammunity.org/2020/formulas/mathematics/college/2kj97jnrp6kam8i0fyft4sviyegrv53u1w.png)
We have the formulas:
![\mathcal{L}^(-1)\{(s-a)/((s-a)^(2)+b^(2))\}=e^(at)cos(bt)\\\\\mathcal{L}^(-1)\{(b)/((s-a)^(2)+b^(2))\}=e^(at)sin(bt)](https://img.qammunity.org/2020/formulas/mathematics/college/jcocgaaml4eidfdgbkxkmlv0uvuei9hku6.png)
We have to factorize the denominator:
![-(s)/(s^(2)+s+1)=-(s+1/2-1/2)/((s+1/2)^(2)+3/4)=-(s+1/2)/((s+1/2)^(2)+3/4)+(1/2)/((s+1/2)^(2)+3/4)](https://img.qammunity.org/2020/formulas/mathematics/college/jkgu8i2o1y6vlxjxyy9f35idw2ro0ih39f.png)
It means that:
![\mathcal{L}^(-1)\{-(s)/(s^(2)+s+1)\}=\mathcal{L}^(-1)\{-(s+1/2)/((s+1/2)^(2)+3/4)+(1/2)/((s+1/2)^(2)+3/4)\}](https://img.qammunity.org/2020/formulas/mathematics/college/v5ize7k5br0at8ygdzqv8z7phagz0p950t.png)
![\mathcal{L}^(-1)\{-(s+1/2)/((s+1/2)^(2)+3/4)\}+\mathcal{L}^(-1)\{(1/2)/((s+1/2)^(2)+3/4)\}\\\\\mathcal{L}^(-1)\{-(s+1/2)/((s+1/2)^(2)+3/4)\}+(1)/(2) \mathcal{L}^(-1)\{(1)/((s+1/2)^(2)+3/4)\}](https://img.qammunity.org/2020/formulas/mathematics/college/248gr99ouogtll27u8v8cm8pfkjv1yklfp.png)
So a=-1/2 and b=(√3)/2. Then:
![\mathcal{L}^(-1)\{-(s+1/2)/((s+1/2)^(2)+3/4)\}=e^{-(t)/(2)}[cos(√(3)t )/(2)]\\\\\\(1)/(2)[(2)/(√(3) ) ]\mathcal{L}^(-1)\{(√(3)/2 )/((s+1/2)^(2)+3/4)\}=(1)/(√(3) ) e^{-(t)/(2)}[sin(√(3)t )/(2)]](https://img.qammunity.org/2020/formulas/mathematics/college/92r25q4mfhoxlu5pj6llcxq0dn3d521ke9.png)
Finally:
![\mathcal{L}^(-1)\{(s+1)/(s(s^(2) + s +1))\}=1-e^(-t/2)cos((√(3) )/(2)t )+(e^(-t/2))/(√(3) )sin((√(3) )/(2)t)](https://img.qammunity.org/2020/formulas/mathematics/college/b7wwpi1p6l3wwrbe5h2ox376phn5dsh6v8.png)