26.4k views
0 votes
What is the activation energy (Q) for a vacancy formation if 10 moles of a metal have 2.3 X 10^13 vacancies at 425°C?

User Rzwnahmd
by
6.3k points

1 Answer

5 votes

Answer:


Activation\ Energy=2.5* 10^(-19)\ J

Step-by-step explanation:

Using the expression shown below as:


N_v=N* e^{-\frac {Q_v}{k* T}

Where,


N_v is the number of vacancies

N is the number of defective sites

k is Boltzmann's constant =
1.38* 10^(-23)\ J/K


{Q_v} is the activation energy

T is the temperature

Given that:


N_v=2.3* 10^(13)

N = 10 moles

1 mole =
6.023* 10^(23)

So,

N =
10* 6.023* 10^(23)=6.023* 10^(24)

Temperature = 425°C

The conversion of T( °C) to T(K) is shown below:

T(K) = T( °C) + 273.15

So,

T = (425 + 273.15) K = 698.15 K

T = 698.15 K

Applying the values as:


2.3* 10^(13)=6.023* 10^(24)* e^{-\frac {Q_v}{1.38* 10^(-23)* 698.15}


ln[\frac {2.3}{6.023}* 10^(-11)]=-\frac {Q_v}{1.38* 10^(-23)* 698.15}


Q_v=2.5* 10^(-19)\ J

User Sfeuerstein
by
5.5k points