195k views
5 votes
What is the De Broglie wavelength of

(a) 1 eV electron

(b) 10 MeV proton

(c) 100 MeV electron? (You might need to use the relativistic energy formula for ©

1 Answer

1 vote

Answer:

(a). The wave length of 1 eV electron is
1.23*10^(-9)\ m.

(b). The wave length of 10 MeV proton is
9.06*10^(-15)\ m.

(c). The wave length of 100 MeV electron is
1.23*10^(-13)\ m.

Step-by-step explanation:

Given that,


E =1\ ev


E=10 MeV


E=100 MeV

(a). We need to calculate the wavelength of 1 eV electron

Using formula of De Broglie wavelength


\lambda=(h)/(√(2mE))


\lambda=\frac{6.63*10^(-34)}{\sqrt{2*9.1*10^(-31)*1*1.6*10^(-19)}}


\lambda=1.23*10^(-9)\ m


\lambda=1.23\ nm

The wave length of 1 eV electron is
1.23*10^(-9)\ m.

(b). We need to calculate the wavelength of 10 MeV proton

Using formula of De Broglie wavelength


\lambda=(h)/(√(2mE))

Put the value into the formula


\lambda=\frac{6.63*10^(-34)}{\sqrt{2*1.67*10^(-27)*10*10^(6)*1.6*10^(-19)}}


\lambda=\frac{6.63*10^(-34)}{\sqrt{5.344*10^(-39)}}


\lambda=9.06*10^(-15)\ m

The wave length of 10 MeV proton is
9.06*10^(-15)\ m.

(c). We need to calculate the wavelength of 100 MeV electron

Using formula of De Broglie wavelength


\lambda=(h)/(√(2mE))

Put the value into the formula


\lambda=\frac{6.63*10^(-34)}{\sqrt{2*9.1*10^(-31)*100*10^(6)*1.6*10^(-19)}}


\lambda=1.23*10^(-13)\ m

The wave length of 100 MeV electron is
1.23*10^(-13)\ m.

Hence, This is the required solution.

User Milkersarac
by
5.0k points