9.2k views
1 vote
What is the reflectivity of a glass surface (n =1.5) in air (n = 1) at an 45° for (a) S-polarized light and (b) P-polarized light?

1 Answer

6 votes

Answer:

a)
R_s = 0.092

b)
R_p = 0.085

Step-by-step explanation:

given,

n =1.5 for glass surface

n = 1 for air

incidence angle = 45°

using Fresnel equation of reflectivity of S and P polarized light


R_s=\left | (n_1cos\theta_i-n_2cos\theta_t)/(n_1cos\theta_i+n_2cos\theta_t) \right |^2\\R_p=\left | (n_1cos\theta_t-n_2cos\theta_i)/(n_1cos\theta_t+n_2cos\theta_i) \right |^2

using snell's law to calculate θ t


sin \theta_t = (n_1sin\theta_i)/(n_2)=(sin45^0)/(1.5)=(√(2))/(3)


cos \theta_t =√(1-sin^2\theta_t) = \frac{sqrt{7}}{3}

a)
R_s=\left | ((1)/(√(2))-(1.5√(7))/(3))/((1)/(√(2))+(1.5√(7))/(3)) \right |^2


R_s = 0.092

b)
R_p=\left | ((√(7))/(3)-(1.5)/(√(2)))/((√(7))/(3)+(1.5)/(√(2))) \right |^2


R_p = 0.085

User Drew Schuster
by
7.4k points