Answer:
(a). The potential on the negative plate is 42.32 V.
(b). The equivalent capacitance of the two capacitors is 0.69 μF.
Step-by-step explanation:
Given that,
Charge = 10.1 μC
Capacitor C₁ = 1.10 μF
Capacitor C₂ = 1.92 μF
Capacitor C₃ = 1.10 μF
Potential V₁ = 51.5 V
Let V₁ and V₂ be the potentials on the two plates of the capacitor.
(a). We need to calculate the potential on the negative plate of the 1.10 μF capacitor
Using formula of potential difference
![V_(1)=(Q)/(C_(1))](https://img.qammunity.org/2020/formulas/physics/college/t32t3502gg5ksomfl5ep90edlt9jttxvt9.png)
Put the value into the formula
![V_(1)=(10.1 *10^(-6))/(1.10*10^(-6))](https://img.qammunity.org/2020/formulas/physics/college/reowm2jgz8mxixi67vgtl0r0ptp5z3ha6k.png)
![V_(1)=9.18\ V](https://img.qammunity.org/2020/formulas/physics/college/izvtg3ffzdd6u8v8m33zz2tyf2fhw3dtxn.png)
The potential on the second plate
![V_(2)=V-V_(1)](https://img.qammunity.org/2020/formulas/physics/college/3cq6k1t7trs1rooydvpkhz067x3ld8w2wr.png)
![V_(2)=51.5 -9.18](https://img.qammunity.org/2020/formulas/physics/college/76pt6vh8hcxu3ckhmvv2jg4yo2s8w60k19.png)
![V_(2)=42.32\ v](https://img.qammunity.org/2020/formulas/physics/college/bo4eyot94qwx5otpa8nbwwboyw5wogl74g.png)
(b). We need to calculate the equivalent capacitance of the two capacitors
Using formula of equivalent capacitance
![C=(C_(1)*C_(2))/(C_(1)+C_(2))](https://img.qammunity.org/2020/formulas/physics/college/v4q6jqowtc1jocbk3jewfxwu852ftby1qo.png)
Put the value into the formula
![C=(1.10*10^(-6)*1.92*10^(-6))/((1.10+1.92)*10^(-6))](https://img.qammunity.org/2020/formulas/physics/college/ae06tf24mgxtpccaas0dd4eirprr10103w.png)
![C=6.99*10^(-7)\ F](https://img.qammunity.org/2020/formulas/physics/college/cuevcjt2mpdm6489tptaknnux7i56bfx2c.png)
![C=0.69\ \mu F](https://img.qammunity.org/2020/formulas/physics/college/wc61v750jk7wqn3udi62zl4w2jnrpjedmh.png)
Hence, (a). The potential on the negative plate is 42.32 V.
(b). The equivalent capacitance of the two capacitors is 0.69 μF.