Answer:
21 m/s
Step-by-step explanation:
For the first ball, in the x direction:
x = x₀ + v₀ t + ½ at²
x = 0 + (8.2 cos 35) t + ½ (0) t²
x = 6.72t
In the y direction:
y = y₀ + v₀ t + ½ at²
y = 8 + (8.2 sin 35) t + ½ (-9.8) t²
y = 8 + 4.70t − 4.9t²
When y = 4:
4 = 8 + 4.70t − 4.9t²
4.9t² − 4.70t − 4 = 0
Solve for t with quadratic formula:
t = [ 4.70 ± √((-4.70)² − 4(4.9)(-4)) ] / 9.8
t = (4.70 ± 10.0) / 9.8
t = 1.50
Therefore:
x = 6.72t
x = 10.1
Now, for the second ball in the x direction:
x = x₀ + v₀ t + ½ at²
x = 0 + (v₀ cos (-θ)) (t − 1) + ½ (0) (t − 1)²
x = v₀ cos θ (t − 1)
And in the y direction:
y = y₀ + v₀ t + ½ at²
y = 8 + (v₀ sin (-θ)) (t − 1) + ½ (-9.8) (t − 1)²
y = 8 − v₀ sin θ (t − 1) − 4.9(t − 1)²
When t = 1.50, x = 10.1 and y = 4:
10.1 = v₀ cos θ (1.50 − 1)
v₀ cos θ = 20.1
4 = 8 − v₀ sin θ (1.50 − 1) − 4.9(1.50 − 1)²
4 = 6.76 − 0.50 v₀ sin θ
v₀ sin θ = 5.49
Using Pythagorean theorem:
v₀² = (v₀ cos θ)² + (v₀ sin θ)²
v₀² = (20.1)² + (5.49)²
v₀ = 20.8
Rounded to two significant figures, the required initial speed is 21 m/s.