Answer:
![v_1 = 896.35 m/s](https://img.qammunity.org/2020/formulas/physics/high-school/kmc99sor48tiknf1qzo2lxhf12uod0wtmm.png)
Step-by-step explanation:
As we know that bullet + pendulum system will move to the height of 0.650 m above the initial position
so here we can use energy conservation to find the speed just after the bullet hit the block
![mgh = (1)/(2)mv^2](https://img.qammunity.org/2020/formulas/physics/middle-school/1ek6f4hakzlj6dy109xhmxtx4n4wjp2p73.png)
![v = √(2gh)](https://img.qammunity.org/2020/formulas/physics/middle-school/s1pl6sgihodp2uhjy5jv5lpgki75wcufir.png)
![v = √(2(9.81)(0.650))](https://img.qammunity.org/2020/formulas/physics/high-school/pgir6v3121j255hk7oen118j8d3cx8ccxm.png)
![v = 3.57 m/s](https://img.qammunity.org/2020/formulas/physics/high-school/b7lcywfec50h6ee86mgp57a4h6dlyo1yz5.png)
Now we can use momentum conservation to find the initial speed of the bullet
![m_1v_1 = (m_1 + m_2)v](https://img.qammunity.org/2020/formulas/physics/high-school/e35e3esi3x2zqh9o7w6fmi5ge814twwy3q.png)
![0.0100 v_1 = (2.50 + 0.01)(3.57)](https://img.qammunity.org/2020/formulas/physics/high-school/a3wavkcu4hlap9oiusoubeje9d158gl2hu.png)
![v_1 = 896.35 m/s](https://img.qammunity.org/2020/formulas/physics/high-school/kmc99sor48tiknf1qzo2lxhf12uod0wtmm.png)