Answer : The value of
at this temperature is 0.0184
Explanation : Given,
Concentration of
at equilibrium =
![3.51* 10^(-3)M](https://img.qammunity.org/2020/formulas/chemistry/high-school/c0wtbjot58fv66j0r38jdggs1crh4awtut.png)
Concentration of
at equilibrium =
![4.76* 10^(-4)M](https://img.qammunity.org/2020/formulas/chemistry/high-school/hjvgeljsyji38f7lihnd3ynqmumj01bpeu.png)
Concentration of
at equilibrium =
![4.76* 10^(-4)M](https://img.qammunity.org/2020/formulas/chemistry/high-school/hjvgeljsyji38f7lihnd3ynqmumj01bpeu.png)
The given equilibrium reaction is,
![2HI(g)\rightleftharpoons H_2(g)+I_2(g)](https://img.qammunity.org/2020/formulas/physics/college/ikdh1ajp7l5q6zj3lee50re6h8k0w5dzcp.png)
The expression of
will be,
![K_c=([H_2][I_2])/([HI]^2)](https://img.qammunity.org/2020/formulas/chemistry/high-school/2jbk0j0rittzj3h568cub8sgelsd4a0jtr.png)
Now put all the given values in this expression, we get:
![K_c=((4.76* 10^(-4))* (4.76* 10^(-4)))/((3.51* 10^(-3))^2)](https://img.qammunity.org/2020/formulas/chemistry/high-school/n6wn300trqm58fwgg7ivwcaslcfoictiuy.png)
![K_c=0.0184](https://img.qammunity.org/2020/formulas/chemistry/high-school/fauwp5qief0wku83imbbpfno5wr2moos0d.png)
Therefore, the value of
at this temperature is 0.0184