Answer
Assuming
At 10000 m height temperature T = -55 C = 218 K
At 1000 m height temperature T = 0 C = 273 K

R = 287 J/kg K



V₂ = V₁ ×1.1222
V₁ = 0.5 × C₁ = 0.5 × 295 = 147.5 m/s
V₂ = 1.1222 × 147.5 = 165.49 m/s
so, the jetliner need to increase speed by ( V₂ -V₁ )
= 165.49 - 147.5
= 17.5 m/s