Answer:
![(0.0228\ ,0.0706)](https://img.qammunity.org/2020/formulas/mathematics/high-school/31obdz55hvv2bqvoqwmcw2frwv78btbje1.png)
Explanation:
Given : Sample size : n= 300
The sample proportion of defectives :
![\hat{p}=(14)/(300)=0.0467](https://img.qammunity.org/2020/formulas/mathematics/high-school/xoce6g8yvmq4g6j55cox8nzkzgt8a4omem.png)
Significance level for 95% confidence level =
![\alpha=1-0.95=0.05](https://img.qammunity.org/2020/formulas/mathematics/college/4d93854tdh8vyqqac8zw25nhdokllaz78c.png)
Critical z-value:
![z_(\alpha/2)=\pm1.96](https://img.qammunity.org/2020/formulas/mathematics/college/t6aj8udrmv2pwydwg1bffawdhitpxlwm1q.png)
Confidence interval for population proportion :
![\hat{p}\pm z_(\alpha/2)\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}](https://img.qammunity.org/2020/formulas/mathematics/college/pxj5zva1u6igd7xybc6x9ei113i3mgmyt5.png)
![= 0.0467\pm (1.96)\sqrt{(0.0467(1-0.0467))/(300)}](https://img.qammunity.org/2020/formulas/mathematics/high-school/p24l8mzs6oiuu5t59grpreabr93ugph25w.png)
![\approx\ 0.0467\pm 0.0239\\\\=(0.0467-0.0239\ , \ 0.0467-0.0239)\\\\=(0.0228\ ,0.0706)](https://img.qammunity.org/2020/formulas/mathematics/high-school/m6qa3mmbfshuaaa0fydmsvxlx89x05hgia.png)
Hence, a 95% two-sided confidence interval on the fraction of defective circuits produced by this particular tool=
![(0.0228\ ,0.0706)](https://img.qammunity.org/2020/formulas/mathematics/high-school/31obdz55hvv2bqvoqwmcw2frwv78btbje1.png)