82.2k views
0 votes
Solve the system by elimination.(show your work)

-2x + 2y + 3z = 0
-2x - y + z = -3
2x +3y +3z = 5

User Jaaq
by
9.1k points

1 Answer

1 vote

Answer:

x = 1 , y = 1 , z = 0

Step-by-step explanation by elimination:

Solve the following system:

{-2 x + 2 y + 3 z = 0 | (equation 1)

-2 x - y + z = -3 | (equation 2)

2 x + 3 y + 3 z = 5 | (equation 3)

Subtract equation 1 from equation 2:

{-(2 x) + 2 y + 3 z = 0 | (equation 1)

0 x - 3 y - 2 z = -3 | (equation 2)

2 x + 3 y + 3 z = 5 | (equation 3)

Multiply equation 2 by -1:

{-(2 x) + 2 y + 3 z = 0 | (equation 1)

0 x+3 y + 2 z = 3 | (equation 2)

2 x + 3 y + 3 z = 5 | (equation 3)

Add equation 1 to equation 3:

{-(2 x) + 2 y + 3 z = 0 | (equation 1)

0 x+3 y + 2 z = 3 | (equation 2)

0 x+5 y + 6 z = 5 | (equation 3)

Swap equation 2 with equation 3:

{-(2 x) + 2 y + 3 z = 0 | (equation 1)

0 x+5 y + 6 z = 5 | (equation 2)

0 x+3 y + 2 z = 3 | (equation 3)

Subtract 3/5 × (equation 2) from equation 3:

{-(2 x) + 2 y + 3 z = 0 | (equation 1)

0 x+5 y + 6 z = 5 | (equation 2)

0 x+0 y - (8 z)/5 = 0 | (equation 3)

Multiply equation 3 by 5/8:

{-(2 x) + 2 y + 3 z = 0 | (equation 1)

0 x+5 y + 6 z = 5 | (equation 2)

0 x+0 y - z = 0 | (equation 3)

Multiply equation 3 by -1:

{-(2 x) + 2 y + 3 z = 0 | (equation 1)

0 x+5 y + 6 z = 5 | (equation 2)

0 x+0 y+z = 0 | (equation 3)

Subtract 6 × (equation 3) from equation 2:

{-(2 x) + 2 y + 3 z = 0 | (equation 1)

0 x+5 y+0 z = 5 | (equation 2)

0 x+0 y+z = 0 | (equation 3)

Divide equation 2 by 5:

{-(2 x) + 2 y + 3 z = 0 | (equation 1)

0 x+y+0 z = 1 | (equation 2)

0 x+0 y+z = 0 | (equation 3)

Subtract 2 × (equation 2) from equation 1:

{-(2 x) + 0 y+3 z = -2 | (equation 1)

0 x+y+0 z = 1 | (equation 2)

0 x+0 y+z = 0 | (equation 3)

Subtract 3 × (equation 3) from equation 1:

{-(2 x)+0 y+0 z = -2 | (equation 1)

0 x+y+0 z = 1 | (equation 2)

0 x+0 y+z = 0 | (equation 3)

Divide equation 1 by -2:

{x+0 y+0 z = 1 | (equation 1)

0 x+y+0 z = 1 | (equation 2)

0 x+0 y+z = 0 | (equation 3)

Collect results:

Answer: {x = 1 , y = 1 , z = 0

User Freefrog
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories