Answer:
a)
![T=4*10^(-4)μs](https://img.qammunity.org/2020/formulas/computers-and-technology/college/bw4yvlqad72dt68a79l5pg1uw8el65i9yu.png)
b)
![N=2.5*10^6 cycles](https://img.qammunity.org/2020/formulas/computers-and-technology/college/9ftwtr7smlb9ipsy0wyvvxiw81dkay3a7a.png)
c) 10000 programs.
Step-by-step explanation:
a) We know that the frequency is the inverse of the period, so:
![f=(1)/(T)\\\\T=(1)/(f)\\T=4*10^(-10)s](https://img.qammunity.org/2020/formulas/computers-and-technology/college/nuvrpg9wqqowlynl0sziz098cuzjzgzd97.png)
1μs is equal to
![1*10^(-6)s](https://img.qammunity.org/2020/formulas/computers-and-technology/college/qtgzs8rfkhjiw0euk54x92hdmcs50cyyl4.png)
so
![T=4*10^(-4)us](https://img.qammunity.org/2020/formulas/computers-and-technology/college/47ax2vu9bdpqrz82xfxu7c310jctjjwdlw.png)
b) If in a second there are 2.5*10^9 cycles:
![N=2.5*10^9*(1*10^(-3))=2.5*10^6 cycles](https://img.qammunity.org/2020/formulas/computers-and-technology/college/ts6d11audu3fs5qd8arpz9wiz0ahg6y1iw.png)
c) we have to make a conversion, we know that a program takes 100*10^(-3) milliseconds, that is, 1*10^(-4) seconds so in 1 second we can execute:
![P=(1s)/(1*10^(-4)s)=10000](https://img.qammunity.org/2020/formulas/computers-and-technology/college/m3fxkpr8kmkvxd1hf7twwcl1unggjclszr.png)
10000 programs.