The mass of Eros must be approximately
kilograms.
How to determine this?
Certainly, let's rearrange and rewrite the steps for determining the mass of the asteroid Eros:
Given:
Radius of circular orbit
meters
Period of orbit
= 1.04 days = 89,856 seconds
Mass of spacecraft
= 545 kg
Gravitational constant (
=

Calculate the velocity (\(v\)) of the spacecraft in the circular orbit:
![\[ v = \frac{{2 \pi \cdot r}}{{T}} \]](https://img.qammunity.org/2020/formulas/physics/high-school/yufhvz35f1llb5xfb8igsweam3zpwfpd1n.png)
![\[ v \approx \frac{{2 \pi \cdot 45 * 10^3 \, \text{m}}}{{89,856 \, \text{s}}} \]](https://img.qammunity.org/2020/formulas/physics/high-school/ltcj43vz05pyxkyz1bp9ycy7cgjyx7yppk.png)
![\[ v \approx 3,019.98 \, \text{m/s} \]](https://img.qammunity.org/2020/formulas/physics/high-school/vulyk9avr1tn118e3d80rxxf0xy2eq48j8.png)
2. Use the formula to determine the mass (\(M\)) of the asteroid Eros:
![\[ M = \frac{{v^2 \cdot r}}{{G}} \]](https://img.qammunity.org/2020/formulas/physics/high-school/2gx6kjvrrkz9tk4sc43rohfoby0gaj6rrg.png)
![\[ M = \frac{{(3,019.98 \, \text{m/s})^2 \cdot (45 * 10^3 \, \text{m})}}{{6.67430 * 10^(-11) \, \text{m}^3 \, \text{kg}^(-1) \, \text{s}^(-2)}} \]](https://img.qammunity.org/2020/formulas/physics/high-school/1mjqyy6xnnm5ypb1lj2gwtukmluqpauwp5.png)
![\[ M \approx 6.68 * 10^(15) \, \text{kg} \]](https://img.qammunity.org/2020/formulas/physics/high-school/8xaisww9hns3vbqq41y6q6pwee1g9yhj9j.png)
Hence, the estimated mass of the asteroid Eros is approximately
kilograms.